
1. (10 points) Let f and g be the functions described by the following graphs:

Graph of f

Graph of g

(a) Fill in the blanks (using interval notation):

The domain of f is

The range of f is

The domain of g is \dots

The range of g is

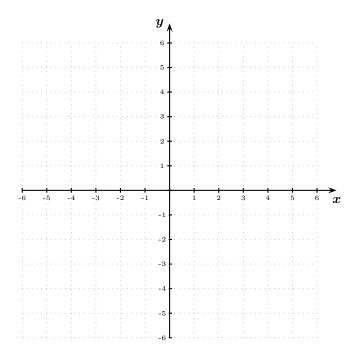
An interval on which g is one-to-one is:

(b) Evaluate the following, if they exist:

$$g(0) = \dots$$

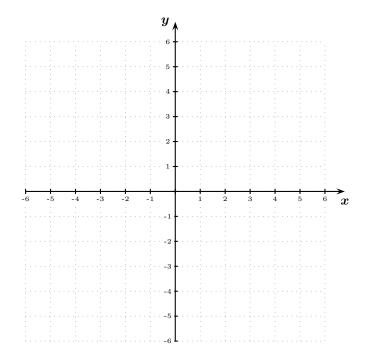
$$g(0) = \dots (f+g)(2) = \dots$$

$$\left(\frac{g}{f}\right)(2) = \dots$$


$$(g \circ f)(-4) = \dots \qquad (f \circ f)(2) = \dots$$

$$(f \circ f)(2) = \dots$$

- 2. Let $f(x) = x^2 + 5x 3$ and g(x) = -2x + 1. Find $(f \circ g)(x)$ and expand your answer.
- 3. Let f(x) = -3x + 11 and $g(x) = \frac{11-x}{3}$. Show that f and g are inverses of each other.
- 4. Verify the identity: $\sin x \tan x = \sec x \cos x$.
- 5. Solve the following equations:
 - (a) $\log_5(x) + \log_5(x+10) = 2$
 - (b) $5e^x = 35$. (Write the answer in terms of logarithms, or round it to the nearest hundredth.)
- 6. Find the inverse of the function $f(x) = 4^{3x+8}$.


- 7. Let $g(x) = 3x^3 17x^2 + 22x 8$.
 - (a) List all possible rational roots of g, according to the Rational Zeros Theorem:

 - (c) The x-intercepts of the graph of y = g(x) are:
 - (d) The y-intercept of the graph of y = g(x) is:
 - (e) Sketch the graph of y = g(x) in the axes below.

- 8. Solve the inequality $\frac{(x-5)(x+4)}{(x-1)^2} \ge 0$.
- 9. For the rational function $f(x) = \frac{(x-5)(x+2)}{(x+4)(x-1)}$.
 - (a) Find the vertical asymptote(s):
 - (b) Find the x-intercept(s):
 - (c) Find the horizontal asymptote:

 - (e) Sketch the graph of y = f(x).

- 10. Evaluate the following expressions:
 - (a) $\log_8\left(\frac{1}{16}\right)$ (exact value) =
 - (b) If $\log_b x = 5$ and $\log_b y = -4$, then the exact value of $\log_b(xy)$ is
 - (c) $\log_7(18)$ (use your calculator and round to the nearest hundredth) =
 - (d) $\sin\left(\frac{9\pi}{4}\right)$ (exact value) =
 - (e) If f(-10) = 7, then $f^{-1}(7) = \dots$
 - (f) If the polynomial p(x) is divided by (x+5), the remainder is 13. Therefore $p(-5) = \dots$
- 11. For the function $f(x) = 3\cos\left(2x \frac{\pi}{2}\right)$,
 - (a) The period is: (b) The amplitude is: (c) The phase shift is:
 - (d) Sketch one period of the graph of y = f(x) on the. Be sure to indicate the scale for the x- and y-axes.

- 12. Solve the following equations:
 - (a) $3\sin x = \sin x 1$, where x is in the interval $[0, 2\pi)$.
 - (b) $\sin(3x) = \frac{\sqrt{3}}{2}$, where x is in the interval $[0, 2\pi)$.