MATH 30 - Precalculus. Homework 8. Due Tu. 04/18/2019. Professor Luis Fernández SOLUTION

1. Use the properties of logarithms to expand the following expressions.

a)
$$\log_9(5y) = \log_9 5 + \log_9 y$$

b) $\log_8 x^7 = 7 \log_8 x$
c) $\log_b(3x^2y^3) = \log_b 3 + 2\log_b x + 3\log_b y$
d) $\log_8 \frac{x^{\frac{1}{2}}}{y^3} = \frac{1}{2}\log_8 x - 3\log_8 y$
e) $\log_5 \sqrt[5]{\frac{x^2}{y}} = \frac{1}{5}(2\log_5 x - \log y)$
f) $\log_5 \sqrt[7]{\frac{\sqrt{x^3}}{\sqrt[4]{y^3}}} = \frac{1}{7}\left(\frac{3}{2}\log_5 x - \frac{3}{4}\log_8 y\right)$
g) $\ln\left[\frac{x^4\sqrt{x^2+3}}{(x+3)^5}\right] = 4\ln x + \frac{1}{2}\ln(x^2+3) - 5\ln(x+3)$
h) $\log\left[\frac{10x^2\sqrt[3]{1-x}}{7(x+1)^2}\right] = \log 10 + 2\log x + \frac{1}{3}\log(1-x) - \log 7 - 2\log(x+1)$

2. Use the properties of logarithms to condense the following expressions.

a)
$$\log x + \log 5 = \log 5x$$

b) $\log_8 x + 3 \log_8 y = \log_8(xy^3)$
c) $4 \ln(x+6) - 5 \ln(x+1) = \ln\left(\frac{(x+6)^4}{(x+1)^5}\right)$
d) $2 \log x + 3 \log y - 4 \log z = \log\left(\frac{x^2y^3}{z^4}\right)$
e) $\frac{1}{2}(\log x + \log y) = \log \sqrt{xy}$
f) $\frac{1}{3}(\log_7 x + 4 \log_7 y) - 3 \log_7(x+y) = \log_7 \frac{\sqrt[3]{xy^4}}{(x+y)^3}$
g) $\frac{1}{3}(5 \ln(x+6) - \ln x - \ln(x^2 - 25)) = \sqrt[3]{\frac{(x+6)^5}{x(x^2 - 25)}}$
h) $\log x + \log(x^2 - 4) - \log 15 - \log(x+3) = \log\left(\frac{x(x^2 - 4)}{15(x+3)}\right)$

- 3. Use the change of base formula to write the following logarithms as logarithms in the indicated base.
 - a) $\log_7 12$; write it in base 10. Solution: $\log_7 12 = \frac{\log 12}{\log 7}$
 - **b)** $\log_9 127$; write it in base *e*. **Solution:** $\log_9 127 = \frac{\ln 127}{\ln 9}$
 - c) $\log_{25} 9$; write it in base 5 and simplify. Solution: $\log_5 9 = \frac{\log_5 9}{\log_5 25} = \frac{\log_5 9}{2}$
 - d) $\log_{\frac{1}{2}} 8$; write it in base 2 and simplify. Solution: $\log_{\frac{1}{2}} 8 = \frac{\log_2 8}{\log_2 \frac{1}{2}} = \frac{3}{-1} = -3$
- 4. If $\log_2 b = \pi$, use the change of base formula to find $\log_b 8 = \frac{\log_2 8}{\log_2 b} = \frac{3}{\pi}$.

5. Solve the following equations.

- **b)** $27^{x} = 81.$ **d)** $5^{2-x} = \frac{1}{125}$ **f)** $8^{1-x} = 4^{x+2}$ a) $4^x = 32$.
- c) $2^{2x-1} = 32$
- e) $7^{\frac{x-2}{6}} = \sqrt{7}$.

Solutions:

- a) $4^x = 32$. Write both sides as powers of 2: $(2^2)^x = 2^5$, so using the rules of exponents we have $2^{2x} = 2^5$, so 2x = 5, so $x = \frac{5}{2}$.
- b) $27^x = 81$. Write both sides as powers of 3: $(3^3)^x = 3^4$, so using the rules of exponents we have $3^{3x} = 3^4$, so 3x = 4, so $x = \frac{4}{3}$.
- c) $2^{2x-1} = 8$. Write both sides as powers of 2 and proceed as in the previous exercises. An alternative way follows: take $\log_2 0$ footh sides, $\log_2 2^{2x-1} = \log_2 8$, and simplify: 2x 1 = 3. Therefore 2x = 4, so x = 2.
- d) $5^{2-x} = \frac{1}{125}$. Proceed as in exercises a) and b) or as in c: Take \log_5 of both sides and simplify: $\log_5 5^{2-x} = \log_5 \frac{1}{125}$, so 2 x = -3. Then solve the equation: 2 = x 3, so 5 = x.
- e) $7^{\frac{x-2}{6}} = \sqrt{7}$. As before, take \log_7 of both sides and simplify: $\log_7 7^{\frac{x-2}{6}} = \log_7 \sqrt{7}$ so $\frac{x-2}{6} = \frac{1}{2}$. Solve this equation: multiply both sides by 6 to get x 2 = 3, so x = 5.
- f) $8^{1-x} = 4^{x+2}$. Take \log_2 of both sides (why base 2? Because 2 divides the bases of the exponentials in both sides): $\log_2 8^{1-x} = \log_2 4^{x+2}$. Use the properties of logarithms and simplify: $(1-x)\log_2 8 = (x+2)\log_2 4$. Now, $\log_2 8 = 3$ and $\log_2 4 = 2$, so we get 3(1-x) = 2(x+2), so 3-3x = 2x+4 so -5x = 1, so $x = -\frac{1}{5}$.
- 6. Solve each exponential equation. Express each solution using natural logarithms (i.e. in base e) or logarithms in base 10. Then use a calculator to find a decimal approximation, correct to two decimal places.

a) $5e^x = 7$	b) $4e^{7x} = 10,273$
c) $3^{\frac{x}{7}} = 0.2$	d) $7^{2x-1} = 3^{x+2}$
e) $e^{2x} - 2e^x - 3 = 0$	f) $2^{2x} + 2^x - 12 = 0$

Solutions:

- a) $5e^x = 7$. Take ln of both sides: $\ln(5e^x) = \ln 7$. Use the properties of logarithms to expand: $\ln 5 + \ln e^x = \ln 7$. Now, $\ln e^x = x$, so we get $\ln 5 + x = \ln 7$. Therefore $x = \ln 7 \ln 5 \approx 0.34$.
- b) $4e^{7x} = 10,273$. Take ln of both sides: $\ln(4e^{7x}) = \ln 10,273$. Use the properties of logarithms to expand: $\ln 4 + \ln e^{7x} = \ln 10,273$. Now, $\ln e^{7x} = 7x$, so we get $\ln 4 + 7x = \ln 10,273$. Therefore $7x = \ln 10,273 \ln 4$, so $x = \frac{\ln 10,273 \ln 4}{7} \approx 1.12$.
- c) $3^{\frac{x}{7}} = 0.2$. Take ln of both sides: $\ln(3^{\frac{x}{7}}) = \ln 0.2$. Use the properties of logarithms to expand: $\frac{x}{7} \ln 3 = \ln 0.2$. Divide both sides by $\ln 3$ to get $\frac{x}{7} = \frac{\ln 0.2}{\ln 3}$. Multiply both sides by 7 to get $x = \frac{7 \ln 0.2}{\ln 3} \approx 10.25$.
- d) $7^{2x-1} = 3^{x+2}$. Take ln of both sides and use the properties of logarithms to get $(2x-1) \ln 7 = (x+2) \ln 3$. Distribute: $(2 \ln 7)x - \ln 7 = x \ln 3 + 2 \ln 3$. Subtract $x \ln 3$ from both sides and add $\ln 7$ to both sides: $(2 \ln 7)x - x \ln 3 = \ln 7 + 2 \ln 3$. Factor x out in the LHS: $x(2 \ln 7 - \ln 3) = \ln 7 + 2 \ln 3$ and finally divide both sides by $(2 \ln 7 - \ln 3)$ to get $x = \frac{\ln 7 + 2 \ln 3}{2 \ln 7 - \ln 3} \approx 1.48$
- e) $e^{2x} 2e^x 3 = 0$. Before finding x, let us first find e^x . Write $e^x = t$. Then $e^{2x} = (e^x)^2 = t^2$, so the equation can be written as $t^2 2t 3 = 0$. This is an easy quadratic equation, so we solve it: (t 3)(t + 1) = 0, so t = -1 or t = 3. Now we find x: the two solutions are the values of x that give $e^x = -1$ and $e^x = 3$. The first one $(e^x = -1)$ is impossible (exponentials are always positive). To find x in the second one, take ln of both sides to get $\ln e^x = \ln 3$, and since $\ln e^x = x$ we have $x = \ln 3 \approx 1.10$.

- f) $2^{2x} + 2^x 12 = 0$. Before finding x, let us first find 2^x . Write $2^x = t$. Then $2^{2x} = (2^x)^2 = t^2$, so the equation can be written as $t^2 + t 12 = 0$. This is an easy quadratic equation, so we solve it: (t 3)(t + 4) = 0, so t = -4 or t = 3. Now we find x: the two solutions are the values of x that give $2^x = -4$ and $2^x = 3$. The first one $(2^x = -4)$ is impossible (exponentials are always positive). To find x in the second one, take ln of both sides to get $\ln 2^x = \ln 3$, and since $\ln 2^x = x \ln 2$ we have $x \ln 2 = \ln 3$, so $x = \frac{\ln 3}{\ln 2} \approx 1.58$.
- 7. Solve the following logarithmic equations.
 - a) $\log_5 x = 3$ b) $\log_4(x-7) = 3$ c) $5 \ln 2x = 20$ d) $\log_5 x + \log_5 3 = 2$ e) $2 \log_5 x = 4$ f) $3 \log x = \log 125$ g) $\log_2 \sqrt{x+4} = 1$ h) $\log_2(x-1) + \log_2(x+1) = 3$ i) $\log(x+7) \log 3 = \log(7x-1)$ j) $\log(x+3) + \log(x-2) = \log 14$

Solutions:

- a) $\log_5 x = 3$. Write it in exponential form: $x = 5^3 = 125$. Check the solution: $\log_5 5^3 = 3$: YES.
- b) $\log_4(x-7) = 3$. Write it in exponential form: $x-7 = 4^3 = 64$. Then add 7 to both sides to get x = 71. Check the solution: $\log_4(71-3) = \log_4 64 = 3$: YES.
- c) $5 \ln 2x = 20$. Divide both sides by 5 to get $\ln 2x = 4$. Write this in exponential form: $2x = e^4$ and divide by 2 to get $x = \frac{e^4}{2} \approx 27.30$. Check the solution: $5 \ln \left(2 \cdot \frac{e^4}{2}\right) = 5 \ln e^4 = 5 \cdot 4 = 20$: YES.
- d) $\log_5 x + \log_5 3 = 2$. Use the properties of logarithms to condense the LHS: $\log_5(3x) = 2$. Now write it in exponential form: $3x = 5^2 = 25$. Finally divide by 3 to get $x = \frac{25}{3}$. Check the solution: $\log_5 \frac{25}{3} + \log_5 3 = \log_5 25 - \log_5 3 + \log_5 3 = \log_5 25 = 2$: YES.
- e) $2 \log_5 x = 4$. Divide both sides by 2: $\log_5 x = 2$, then write it in exponential form to get $x = 5^2 = 25$. Check the solution: $2 \log_5 25 = 2 \cdot 2 = 4$: YES.
- f) $3 \log x = \log 125$. Use the properties of logarithms to condense the LHS: $\log x^3 = \log 125$. Then we must have $x^3 = 125$, so x = 5. Check the solution: $3 \log 5 = \log 5^3 = \log 125$: YES.
- g) $\log_2 \sqrt{x+4} = 1$. Write it in exponential form: $\sqrt{x+4} = 2$. Then square both sides to get rid of the $\sqrt{x+4} = 4$. Therefore, x = 0. Check the solution: $\log_2 \sqrt{0+4} = \log_2 \sqrt{4} = \log_2 3 = 1$: YES.
- h) $\log_2(x-1) + \log_2(x+1) = 3$. Use the properties of logarithms to condense the LHS: $\log_2(x-1)(x+1) = 3$. Then write it in exponential form: $(x-1)(x+1) = 2^3 = 8$. Now solve this equation. First expand the LHS to get $x^2 1 = 8$, so $x^2 = 9$, so x = -3 or x = 3. Check the solution: Check the solution x = -3: $\log_2(-3-1) + \log_2(-3+1) = \log_2(-4) + \log_2(-2)$ which is NOT DEFINED, so x = -3 is NOT a solution. Now check x = 3: $\log_2(3-1) + \log_2(3+1) = \log_2(2) + \log_2(4) = 1 + 2 = 3$: YES. Therefore the only solution is x = 3.

- i) $\log(x+7) \log 3 = \log(7x-1)$. Use the properties of logarithms to condense the LHS: $\log \frac{x+7}{3} = \log(7x-1)$. Remove the log's in both sides: $\frac{x+7}{3} = 7x 1$. Then solve this equation: multiply both sides by 3 to get x + 7 = 21x 3, so -20x = -10, so $x = \frac{1}{2}$. Check the solution: The LHS is $\log(\frac{1}{2}+7) \log 3 = \log\frac{15}{2} \log 3 = \log\frac{15}{6} = \log\frac{5}{3}$. The RHS is $\log(7 \cdot \frac{1}{2} 1) = \log(\frac{7}{2} 1) = \log\frac{5}{2}$: YES.
- j) $\log(x+3) + \log(x-2) = \log 14$. Use the properties of logarithms to condense the LHS: $\log(x+3)(x-2) = \log 14$. Remove the log's in both sides to get (x+3)(x-2) = 14. Now solve this equation: expand the LHS to get $x^2 + x - 6 = 14$, so $x^2 + x - 20 = 0$. Factor the LHS: (x+5)(x-4) = 0 so the possible solutions are x = -5 and x = 4.

Check the solution: First check x = -5: $\log(-5+3) + \log(-5-2) = \log(-2) + \log(-7)$ which is undefined, so x = -5 is NOT a solution. Now check x = 4: $\log(4+3) + \log(4-2) = \log(7) + \log(2) = \log(7 \cdot 2) = \log 14$: YES. Therefore the only solution is x = 4.

8. Do exercises 17, 19, 21, 23 from Section 4.5 in the book.

Solution: Find the solutions at the back of the textbook.