SOLUTION

1. Use a calculator to approximate the following numbers to 4 decimal places.

a) $2^{3.4} = 10.5560$	b) $e^{1.5} = 4.4817$	c) $6^{-\frac{1}{3}} = 1.8171$	d) $\sqrt{3}^{\sqrt{2}} = 2.1746$
e) $\log 12 = 1.0792$	f) $\log \sqrt{5} = 0.3495$	g) $\ln \frac{1}{5} = 1.6094$	h) $\ln 469993 = 13.0605$

- 2. Find without using a calculator.
 - a) $\log_2 8 = 3$ b) $\log_3 \frac{1}{3} = -1$ c) $\log_6 \sqrt{6} = \frac{1}{2}$ d) $\log_{102} 102^4 = 4$ e) $\log_8 2 = \frac{1}{3}$ f) $\log_{27} \frac{1}{3} = -\frac{1}{3}$ g) $\log_5 1 = 0$ h) $\log_3(\log_8 2) = \log_3(\frac{1}{3}) = -1$
- **3.** Simplify each expression. Here a is a positive number.

a) $\log_a a^4 = 4$	b) $\log_a \frac{1}{a^7} = -7$	c) $\log_a a^{\frac{1}{5}} = \frac{1}{5}$	$\mathbf{d}) \ \log_a \sqrt[3]{a} = \frac{1}{3}$
e) $2^{\log_2 7} = 7$	f) $a^{\log_a \frac{1}{5}} = \frac{1}{5}$	g) $10^{\log\sqrt{4}} = \sqrt{4}$	h) $e^{\ln 3x^2} = 3x^2$

4. Graph the following functions in the axes provided (both in the same axes).

5. Find the domain of the following logarithmic functions.

a)
$$f(x) = \log_4(x-5)$$

b) $g(x) = \ln(x+5)^2$
c) $h(x) = \ln\left(\frac{x-2}{x+1}\right)^2$

Solutions:

- a) $\log_4(x-5)$ is defined only when x-5>0, i.e. when x>5. Therefore the domain of f is $(5,\infty)$.
- b) $\ln(x+5)^2$ is defined only when $(x+5)^2 > 0$. $(x+5)^2$ is always positive except at x = -5, where it is 0. Therefore -5 is not in the domain, but everything else is, and therefore the domain of g is $(-\infty, -5) \cup (-5, \infty)$.
- c) $\ln\left(\frac{x-2}{x+1}\right)$ is defined only when $\frac{x-2}{x+1} > 0$, so we have to solve the inequality $\frac{x-2}{x+1} > 0$. Do a table of signs as in the previous exercises to find that the solution of this inequality is $(-\infty, -1) \cup (2, \infty)$. Therefore the domain of h is $(-\infty, -1) \cup (2, \infty)$.
- 6. Find the inverse of the following functions.
 a) f(x) = 4e^{x+2} 3
 b) g(x) = 2 + log₄(2x 3)

Solutions:

a) We have to solve for y in the equation f(y) = x, or $4e^{y+2} - 3 = x$

$$4e^{y+2} - 3 = x \Rightarrow 4e^{y+2} = x+3 \Rightarrow e^{y+2} = \frac{x+3}{4} \Rightarrow y+2 = \ln\left(\frac{x+3}{4}\right) \Rightarrow y = \ln\left(\frac{x+3}{4}\right) - 2e^{y+2} = \frac{x+3}{4} \Rightarrow y+2 = \ln\left(\frac{x+3}{4}\right) = 2e^{y+2} = \frac{x+3}{4} = \frac{x$$

Therefore $f^{-1}(x) = \ln\left(\frac{x+3}{4}\right) - 2.$

b) We have to solve for y in the equation g(y) = x, or $2 + \log_4(2y - 3) = x$:

$$2 + \log_4(2y - 3) = x \Rightarrow \log_4(2y - 3) = x - 2 \Rightarrow 2y - 3 = 4^{x-2} \Rightarrow 2y = 3 + 4^{x-2} \Rightarrow y = \frac{3 + 4^{x-2}}{2}$$

7. Do exercises 1–4, 10–12, from section 4.3 (Right Triangle Trigonometry) of the text.

Solution: Please see the answer to the odd numbered exercises in the back of the textbook.