SOLUTION

- 1. Solve the following inequalities. Express the final answer in interval notation.
 - a) (x+7)(x-3) > 0b) $-x^2 + x > 0$ c) $x^2 - 5x \ge -6$ d) $x^3 + 2x^2 - 4x \le 8$

Solutions:

a) (x+7)(x-3) > 0. The LHS is already factored. Let us do a table of signs:

	-	-7 :	3
(x+7)	_	+	+
(x-3)	_	_	+
(x+7)(x-3)	+	_	+

Therefore (x+7)(x-3) is positive in $(-\infty, -7)$ and in $(3, \infty)$, so the solution of (x+7)(x-3) > 0 is $(-\infty, -7) \cup (3, \infty)$

b) $-x^2 + x > 0$. Factor: x(-x + 1) > 0. Do a table of signs:

	()	l
x	_	+	+
(-x+1)	+	+	—
x(-x+1)	_	+	_

Therefore $-x^2 + x > 0$ is positive in (0, 1), so the solution of $-x^2 + x > 0$ is (0, 1).

c) $x^2 - 5x \ge -6$. First move everything to the RHS: $x^2 - 5x + 6 \ge 0$. Then factor: $(x - 2)(x - 3) \ge 0$. Do a table of signs:

	4	٤ ٤)
(x-2)	_	+	+
(x-3)	_	—	+
(x-2)(x-3)	+	—	+

Therefore $x^2 - 5x + 6$ is positive in $(-\infty, 2)$ and $(3, \infty)$. so the solution of $x^2 - 5x + 6 \ge 0$ (which is the same as the solution of $x^2 - 5x \ge -6$) is $(-\infty, 2] \cup [3, \infty)$. Note that the brackets at 2 and 3 are square since both 2 and 3 are solutions.

d) $x^3 + 2x^2 - 4x \le 8$. First move everything to the RHS: $x^3 + 2x^2 - 4x - 8 \le 0$. Then factor (use synthetic division): $(x-2)(x+2)^2 \le 0$. Do a table of signs:

	-	2	2
$(x+2)^2$	+	+	+
(x - 2)	_	_	+
$(x-2)(x+2)^2$	_	_	+

Therefore $x^3 + 2x^2 - 4x - 8$ is negative in $(-\infty, 2)$. so the solution is $(-\infty, 2]$. Note that the bracket at 2 is square since 2 is a solution.

2. Solve the following inequalities. Express the final answer in interval notation.

a)
$$\frac{x-2}{x+3} > 0$$

b) $\frac{3x+5}{6-2x} \ge 0$
c) $\frac{x^2-3x+2}{x^2-2x-3} < 0$
d) $\frac{x}{x+2} \le 2$

Solutions:

a) $\frac{x-2}{x+3} > 0$. Both the numerator and denominator are factored. Do a table of signs:

	-6	3	2
(x+3)	-	+	+
(x - 2)	_	_	+
$\frac{x-2}{x+3}$	+	_	+

Therefore the solution is $(-\infty, -3) \cup (2, \infty)$.

b) $\frac{3x+5}{6-2x} \ge 0$. Both the numerator and denominator are factored. The numerator is 0 at x = -5/3, and the denominator is 0 at x = 3. Do a table of signs:

	-5	5/3	3
$\overline{(3x+5)}$	_	+	+
$\overline{(6-2x)}$	+	+	_
$\frac{3x+5}{6-2x}$	_	+	_

Therefore the solution is $\left[-\frac{5}{3},3\right)$. Note that $-\frac{5}{3}$ is a solution, but 3 is not.

c) $\frac{x^2 - 3x + 2}{x^2 - 2x - 3} < 0$. First factor both the denominator and the numerator to get $\frac{(x-2)(x-1)}{(x-3)(x+1)} < 0$. Do a table of signs:

		_	-1 1	1 2	2	3
	(x+1)	_	+	+	+	+
	(x - 1)	_	_	+	+	+
	(x - 2)	_	_	_	+	+
	(x - 3)	_	_	_	_	+
(: (:	$\frac{(x-2)(x-1)}{(x-3)(x+1)}$	+	_	+	_	+

Therefore the solution is $(-1, 1) \cup (2, 3)$.

d) $\frac{x}{x+2} \le 2$. First move everything to the RHS: $\frac{x}{x+2} - 2 \le 0$. Then write the LHS under a common denominator: $\frac{x}{x+2} - 2 = \frac{x}{x+2} - \frac{2(x+2)}{x+2} = \frac{-x-4}{x+2}$. So the inequality is the same as $\frac{-x-4}{x+2} \le 0$. The numerator and denominator are already factored. Do a table of signs:

	_	-4	-2
(-x-4)	+	_	_
(x+2)	_	—	+
$\frac{-x-4}{x+2}$	_	+	_

Therefore the solution of $\frac{x}{x+2} \le 2$ is $(-\infty, -2)$ (note that -2 is not a solution because at x = -2 the denominator is 0).

^{3.} Do exercises 11 and 51 from exercise set 2.7 in the textbook.

Solution: Please find the solution at the back of the textbook.

4. Find the domain of the following functions. Remember that for a square root to be a real number, the radicand must be greater than or equal to 0.

a)
$$f(x) = \sqrt{2x^2 - 5x + 2}$$

b) $g(x) = \sqrt{\frac{x}{2x - 1} - 1}$

Solutions:

a) For x to be in the domain of f, the radicand $2x^2 - 5x + 2$ must be ≥ 0 . So we have to solve the inequality $2x^2 - 5x + 2 \ge 0$. First factor (use, for example, synthetic division): $2x^2 - 5x + 2 = (x - 2)(2x - 1)$. Then do a table of signs: 1

0	$\overline{2}$	2 2	2
(2x-1)	_	+	+
(x-2)	_	_	+
(x-2)(2x-1)	+	_	+

Therefore the domain of f is $(-\infty, \frac{1}{2}] \cup [2, \infty)$.

b) For x to be in the domain of g, the radicand $\frac{x}{2x-1} - 1$ must be ≥ 0 . So we have to solve the inequality $\frac{x}{2x-1} - 1 \ge 0$. First write the LHS under the same denominator:

$$\frac{x}{2x-1} - 1 = \frac{x}{2x-1} - \frac{2x-1}{2x-1} = \frac{-x+1}{2x-1},$$

so we need to solve $\frac{-x+1}{2x-1} \ge 0$. Both numerator and denominator are factored, so do a table of signs:

	2	2	l
(2x - 1)	_	+	+
(-x+1)	+	+	_
(x-2)(2x-1)	_	+	_

Therefore the domain of g is $[\frac{1}{2}, 1]$.

5. Solve the following inequalities. Express the final answer in interval notation.

a)
$$x^{3} + 2x^{2} - 4x - 8 > 0$$

b) $x^{4} \ge -4x^{2}$
c) $\frac{1}{x+1} < \frac{2}{x-1}$
d) $\frac{x^{3} - 4x^{2} + 6x - 2}{x^{2} - 5x + 6} \le x$

Solutions:

a) $x^3 + 2x^2 - 4x - 8 > 0$. Factor (use synthetic division): $x^3 + 2x^2 - 4x - 8 = (x - 2)(x + 2)^2$. Do a table of signs:

	-2	4	<u> </u>
$(x+2)^2$	+	+	+
(x-2)	-	_	+
$(x-2)(x+2)^2$	_	_	+

Therefore the solution is $(2, \infty)$.

b) $x^4 \ge -4x^2$. Bring everything to the LHS: $x^4 + 4x^2 \ge 0$. Then factor the LHS: $x^4 + 4x^2 = x^2(x^2 + 4)$. Note that $x^2 + 4$ is positive for any real value of x. Do a table of signs:

	U)
x^2	+	+
(x^2+4)	+	+
$x^{2}(x^{2}+4)$	+	+

Therefore the solution is $(-\infty, \infty)$ (in other words, every real number is a solution).

c) $\frac{1}{x+1} < \frac{2}{x-1}$. Bring everything to the LHS: $\frac{1}{x+1} - \frac{2}{x-1} < 0$. Then write the LHS with the same denominator:

$$\frac{1}{x+1} - \frac{2}{x-1} = \frac{x-1}{(x+1)(x-1)} - \frac{2(x+1)}{(x+1)(x-1)} = \frac{-x-3}{(x+1)(x-1)} < 0.$$

Both numerator and denominator are factored, so do a table of signs

	-	-3 -	-1	1
(-x-3)	+	_	_	_
(x+1)	_	_	+	+
(x - 1)	_	_	_	+
$\frac{-x-3}{(x-1)(x+1)}$	+	_	+	_

Therefore the solution is $(-3, -1) \cup (1, \infty)$.

d) $\frac{x^3 - 4x^2 + 6x - 2}{x^2 - 5x + 6} \le x$. Bring everything to the LHS: $\frac{x^3 - 4x^2 + 6x - 2}{x^2 - 5x + 6} - x \le 0$. Then put the LHS under a common denominator:

$$\frac{x^3 - 4x^2 + 6x - 2}{x^2 - 5x + 6} - x = \frac{x^3 - 4x^2 + 6x - 2}{x^2 - 5x + 6} - \frac{x(x^2 - 5x + 6)}{x^2 - 5x + 6} = \frac{x^3 - 4x^2 + 6x - 2}{x^2 - 5x + 6} - \frac{x^3 - 5x^2 + 6x}{x^2 - 5x + 6} = \frac{x^2 - 2}{x^2 - 5x + 6} \le 0.$$

Factor: the zeros of $x^2 - 2$ are: $x^2 - 2 = 0 \Rightarrow x^2 = 2 \Rightarrow x = \pm\sqrt{2}$, so $x^2 - 2 = (x - \sqrt{2})(x + \sqrt{2})$ (by the Factor Theorem). The denominator factors as $x^2 - 5x + 6 = (x - 3)(x - 2)$, and therefore we have to solve the inequality

$$\frac{(x-\sqrt{2})(x+\sqrt{2})}{(x-3)(x-2)} \le 0$$

Do a table of signs:

	-1	$\sqrt{2}$ v	$\sqrt{2}$ 2	2	3
$\overline{(x+\sqrt{2})}$	_	+	+	+	+
$(x-\sqrt{2})$	_	_	+	+	+
(x-2)	_	_	_	+	+
(x-3)	_	_	_	_	+
$\frac{(x-\sqrt{2})(x+\sqrt{2})}{(x-3)(x-2)}$	+	_	+	_	+

Therefore the solution is $[-\sqrt{2}, \sqrt{2}] \cup (2, 3)$. Note that $\sqrt{2}$ and $-\sqrt{2}$ are solutions since at these values the numerator is 0 (and $0 \le 0$), whereas 2 and 3 are not since at these values the denominator is 0, so the fraction is undefined.

^{6.} Do exercises 23, 25, 27, 41, 43, 67, 69, 71 from exercise set 4.4 in the textbook.Solutions: See the answers in the back of the book.