MATH 30 - Precalculus. Homework 5. Due Th. 03/21/2019. Professor Luis Fernández

SOLUTION

Write your answers in other sheets and STAPLE this one to your other sheets.

1. Do exercises 2, 4 and 6 from Exercise Set 2.5 of the book (page 335 of the 3rd edition).

Solution: We have to list all possible rational zeros for the following functions:

Ex. 2: $f(x) = x^3 + 3x^2 - 6x - 8$. The possible rational roots have the form $\frac{p}{q}$ where p is a factor of 8 and q is a factor of 1. Thus the possibilities for p are $\pm 1, \pm 2, \pm 4, \pm 8$ and the possibilities for q are ± 1 . Therefore the list of all possible rational roots is

$$\pm 1, \pm 2, \pm 4, \pm 8.$$

Ex. 4: $f(x) = 2x^4 + 3x^3 - 11x^2 - 9x + 15$. The possible rational roots have the form $\frac{p}{q}$ where p is a factor of 15 and q is a factor of 2. Thus the possibilities for p are $\pm 1, \pm 3, \pm 5, \pm 15$ and the possibilities for q are $\pm 1, \pm 2$. Therefore the list of all possible rational roots is

$$\pm 1, \pm 3, \pm 5, \pm 15, \pm \frac{1}{2}, \pm \frac{3}{2}, \pm \frac{5}{2}, \pm \frac{15}{2}.$$

Ex. 6: $f(x) = 3x^4 - 11x^3 - 3x^2 - 6x + 8$. The possible rational roots have the form $\frac{p}{q}$ where p is a factor of 8 and q is a factor of 3. Thus the possibilities for p are $\pm 1, \pm 2, \pm 4, \pm 8$ and the possibilities for q are $\pm 1, \pm 3$. Therefore the list of all possible rational roots is

$$\pm 1, \pm 2, \pm 4, \pm 8, \pm \frac{1}{3}, \pm \frac{2}{3}, \pm \frac{4}{3}, \pm \frac{8}{3}$$

2. Do exercises 12, 14, 22 and 24 from Exercise Set 2.5 of the book (page 336 of the 3rd edition). Solution:

Ex. 12: The possible rational zeros of $f(x) = 2x^3 - 5x^2 + x + 2$ are $\pm 1, \pm 2$ and $\pm \frac{1}{2}$. Now we do synthetic division to test them:

	2	-5	1	2	Therefore $f(x) = 2x^3 - 5x^2 + x + 2 = (x - 1)(x - 2)(2x + 1).$
1		2	-3	-2	So the zeros of f are 1, 2 and $-\frac{1}{2}$.
	2	-3	-2	0	
2		4	2		$\left(-\frac{1}{2}\right)$ is the solution of writing the last factor of $f(x)$ equal to 0, i.e. $\left(2\pi + 1\right) = 0$
	2	1	0		to 0, i.e. $(2x+1) = 0.$)

Ex. 14: The possible rational zeros of $f(x) = 2x^3 + x^2 - 3x + 1$ are $\pm 1, \pm \frac{1}{2}$. Now we do synthetic division to test them. Check that 1 and -1 are not roots. However, $\frac{1}{2}$ is:

Therefore
$$f(x) = 2x^3 + x^2 - 3x + 1 = (x - \frac{1}{2})(2x^2 + 2x - 2).$$

Ex. 22: The possible rational zeros of $f(x) = 2x^3 - 5x^2 - 6x + 4$ are $\pm 1, \pm 2, \pm 4, \pm \frac{1}{2}$. Now we do synthetic division to test them. Check that $\pm 1, \pm 2, \pm 4$ are not roots. However, $\frac{1}{2}$ is:

Ex. 24: The possible rational zeros of $f(x) = x^4 - 2x^2 - 16x - 15$ are $\pm 1, \pm 3, \pm 5, \pm 15$. Now we do synthetic division to test them. Check that 1 is not a root. However, -1 is:

	1	0	-2	-16	-15	Therefore we have to solve
-1		-1	1	1	15	$x^4 - 2x^2 - 16x - 15 = (x+1)(x-3)(x^2 + 2x + 5) = 0.$
	1	-1	-1	-15	0	So it only remains to solve $x^2 + 2x + 5 = 0$, for which you can
3		3	6	15		use the quadratic formula. The final answer is: The roots of the
			5	0		equation $x^4 - 2x^2 - 16x - 15 = 0$ are $-1, 3, -1 - 2i, -1 + 2i$.

- **3.** Solve the following polynomial equations. [How? We did several examples in class; or look at examples 3, 4 and 5 of the book, section 2.5.]
 - **a)** $x^3 4x^2 7x + 10 = 0$ **b)** $3x^3 - 8x^2 - 8x + 8 = 0$
 - c) $x^4 + 3x^3 20x^2 + 24x 8 = 0$ Solution: d) $x^4 - x^3 + 2x^2 - 4x - 8 = 0$
- a) The possible rational solutions of $x^3 4x^2 7x + 10 = 0$ are $\pm 1, \pm 2, \pm 5, \pm 10$. Now we do synthetic division to test them. Check that 1 is not a root. However, -1 is:

- b) I only write the solutions (proceed as in the previous exercise, or as in exercise 2). They are $\frac{2}{3}$, $1 + \sqrt{5}$, $1 \sqrt{5}$.
- c) I only write the solutions (proceed as in the previous exercise, or as in exercise 2). They are: 1, 2, $-3 \sqrt{13}$, $-3 + \sqrt{13}$.
- d) I only write the solutions (proceed as in the previous exercise, or as in exercise 2). They are -1, 2, 2i, -2i.
- **4.** Use the results of the previous exercise to factor the following polynomials completely. [NOTE: you DO NOT need to do any calculation, only use the *factor theorem*.]
 - a) $x^3 4x^2 7x + 10$ b) $3x^3 - 8x^2 - 8x + 8$ c) $x^4 + 3x^3 - 20x^2 + 24x - 8$ d) $x^4 - x^3 + 2x^2 - 4x - 8$ Solution:

a) From the previous exercise, the zeros of $x^3 - 4x^2 - 7x + 10$ are 1, -2 and 5. Therefore, $x^3 - 4x^2 - 7x + 10 = (x - 1)(x + 2)(x - 5)$

- **b)** From the previous exercise, the zeros of $3x^3 8x^2 8x + 8$ are $\frac{2}{3}$, $1 + \sqrt{5}$, $1 \sqrt{5}$. Therefore, $3x^3 - 8x^2 - 8x + 8 = (x - \frac{2}{3})(x - (1 + \sqrt{5}))(x - (1 - \sqrt{5}))$.
- c) From the previous exercise, the zeros of $x^4 + 3x^3 20x^2 + 24x 8$ are 1, 2, $-3 \sqrt{13}$, $-3 + \sqrt{13}$. Therefore, $x^4 + 3x^3 - 20x^2 + 24x - 8 = (x - 1)(x - 2)(x - (-3 - \sqrt{13}))(x - (-3 + \sqrt{13}))$

d) From the previous exercise, the zeros of $x^4 - x^3 + 2x^2 - 4x - 8$ are -1, 2, 2i, -2i.

5. Solve the equation $(x-1)^2(x-2)(x-3)(x+4) = 0$.

[NOTE: you DO NOT need to do any calculation for this one; use the *factor theorem* to find the solution by just looking at the equation.]

Solution: 1 (with multiplicity two), 2, 3 and -4.

- 6. Do exercises 44 and 58 from Exercise Set 2.3 of the book. Do not forget to use graph paper to do the graphs.
 44. Graph f(x) = x⁴ x²
 - a. END BEHAVIOUR. Since the leading coefficient is 1 and the degree is even, the end behaviour is:

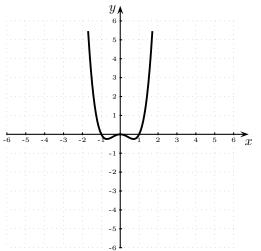
b. *x*-INTERCEPTS. $x^4 - x^2 = x^2(x^2 - 1) = x^2(x - 1)(x + 1)$.

Therefore the graph crosses the x-axis ONLY at x = 1 and x = -1, and touches the x axis and turns around ONLY at x = 0 (because 0 has multiplicity 2).

c. *y*-INTERCEPT. f(0) = 0, so the *y* intercept is y = 0.

d. SYMMETRY. Since $f(-x) = (-x)^4 - (-x)^2 = x^4 - x^2 = f(x)$, the function is even, so it is symmetric about the *y*-axis.

e. The graph looks like



58. Graph $f(x) = x^3(x+2)^2(x+1)$

a. END BEHAVIOUR. If we multiply out the polynomial we get $f(x) = x^6 + \text{"more stuff with lower exponents"}$. Therefore the leading coefficient is 1 and the degree is 6, which is even, and therefore the end behaviour is \backslash

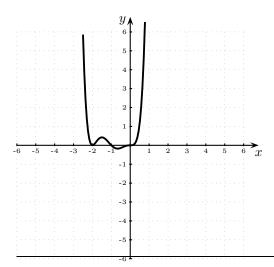
b. *x*-INTERCEPTS. The polynomial is already factored. The roots are 0 (with multiplicity 3), -2 (with multiplicity 2) and -1 (with multiplicity 1).

Therefore the graph crosses the x-axis ONLY at x = 0 (where it also flattens out) and x = -1, and touches the x axis and turns around ONLY at x = -2.

c. *y*-INTERCEPT. f(0) = 0, so the *y* intercept is y = 0.

d. SYMMETRY. Since $f(-x) = (-x)^3((-x)+2)^2((-x)+1) = -x^3(x-2)^2(1-x)$ which is not equal to f(x) or to -f(x). Therefore the graph has no symmetry.

e. The graph looks like



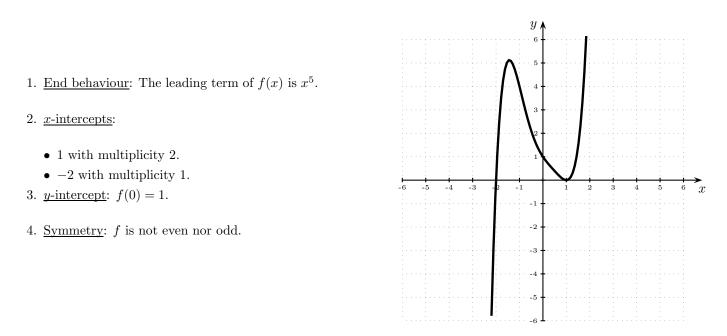
7. For the following polynomial functions, find

- 1. The end behaviour.
- 3. The *y*-intercept.
- a) $f(x) = x^3 13x + 12$
 - $x^{3} 13x + 12$
- c) $f(x) = x^7 3x^6 x^5 + 11x^4 12x^3 + 4x^2$
- Solutions:
- a) 1. End behaviour: The leading term is x^3 , so for x large f(x) looks like x^3 :
 - 2. x-intercepts: $x^3 13x + 12 = (x 3)(x 1)(x + 4)$, so the x-intercepts are 3, 1 and -4, all with multiplicity 1.
 - 3. The y-intercept: f(0) = 12.
 - 4. Is neither. If it were, the x-intercepts would be symmetric about the y-axis.
- b) 1. End behaviour: The leading term is $-2x^4$, so for x large f(x) looks like $-2x^4$:
 - 2. x-intercepts: $-2x^4 + 2x^2 = -2x^2(x-1)(x+1)$, so the x-intercepts are
 - 0 with multiplicity 2.
 - 1 and -1 with multiplicity 1.
 - 3. The y-intercept: f(0) = 0.
 - 4. $f(-x) = -2(-x)^4 + 2(-x)^2 = -2x^4 + 2x^2 = f(x)$, so f is even (in other words, symmetric about the y-axis).
- c) 1. End behaviour: The leading term is x^7 , so for x large f(x) looks like x^7 :
 - 2. x-intercepts: $x^7 3x^6 x^5 + 11x^4 12x^3 + 4x^2 = x^2(x-2)(x-1)^3(x+2)$ (use synthetic division), so the x-intercepts are
 - 0 with multiplicity 2.
 - 1 with multiplicity 3.
 - 2 and -2 with multiplicity 1.
 - 3. The y-intercept: f(0) = 0.
 - 4. Is neither. If it were, the x-intercepts would be symmetric about the y-axis.
- d) 1. End behaviour: The leading term is x^4 , so for x large f(x) looks like x^4 :
 - 2. x-intercepts: $x^4 2x^3 x^2 + 4x 2 = (x 1)^2(x^2 2)$ (use synthetic division), so the x-intercepts are
 - 1 with multiplicity 2.
 - $\sqrt{2}$ and $-\sqrt{2}$ with multiplicity 1 (these are the solutions of $(x^2 2) = 0$).
 - 3. The y-intercept: f(0) = -2.

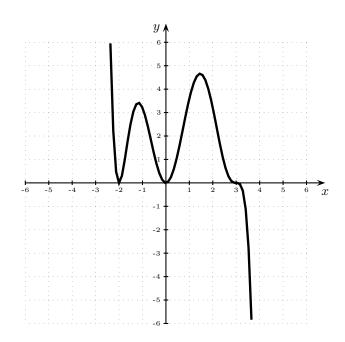
- 2. The *x*-intercepts and their multiplicity.
- 4. Whether the function is even, odd or neither.
- b) $f(x) = -2x^4 + 2x^2$ d) $x^4 - 2x^3 - x^2 + 4x - 2$

4. Is neither. If it were, the x-intercepts would be symmetric about the y-axis (and 1 is an x-intercept, but -1 is not).

8. Given the following information about the polynomial function f(x), graph f(x) in the axes provided.



- 9. Given the following information about the polynomial function f(x), graph f(x) in the axes provided.
 - 1. End behaviour: The leading term of f(x) is $-x^7$.
 - 2. <u>*x*-intercepts</u>:
 - -2 with multiplicity 2.
 - 0 with multiplicity 2.
 - 3 with multiplicity 3.
 - 3. <u>y-intercept</u>: f(0) = 0.
 - 4. <u>Symmetry</u>: f is not even nor odd.



- 10. For the following rational functions, first find
 - 1. The end behaviour and the horizontal asymptotes, if any.
- 2. The vertical asymptotes.

3. The *x*-intercepts and their multiplicity.

4. The *y*-intercept.

0

Then sketch the graph of the function in the graph paper provided (or in your own).

a)
$$f(x) = \frac{x+1}{x-1}$$

b) $f(x) = \frac{3x^2}{x^2-9}$
c) $f(x) = \frac{x-4}{x^2-x-6}$
 $f(x) = \frac{2x+5}{x^3-13x+12}$

Solutions:

- 1. <u>End behaviour</u>: As $x \to \pm \infty$, $f(x) \approx \frac{x}{x} = 1$, so it has a horizontal asymptote at y = 1.
- 2. <u>Vertical asymptotes</u>: the denominator is x 1; it is 0 only when x = 1, so f has a vertical asymptote at x = 1.
- 3. <u>x-intercepts</u>: the numerator is x + 1; it is 0 only when x = -1, so the only x-intercept is x = -1with multiplicity 1.
- 4. <u>y-intercept</u>: $f(0) = \frac{0+1}{0-1} = -1$.

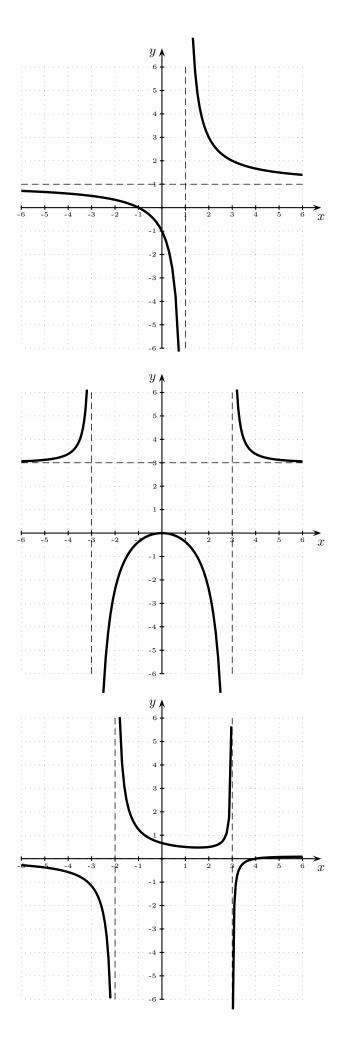
b)

- 1. <u>End behaviour</u>: As $x \to \pm \infty$, $f(x) \approx \frac{3x^2}{x^2} = 3$, so it has a horizontal asymptote at y = 3.
- 2. <u>Vertical asymptotes</u>: the denominator is $x^2 9$; it is 0 only when x = 3 or x = -3, so f has vertical asymptotes at x = 3 and at x = -3.
- 3. <u>x-intercepts</u>: the numerator is x^2 ; it is 0 only when x = 0, so the only x-intercept is x = 0with multiplicity 2.
- 4. <u>*y*-intercept</u>: f(0) = 0.

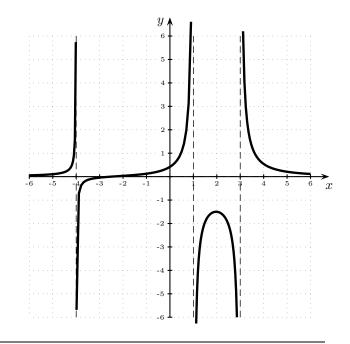
c)

- 1. <u>End behaviour</u>: As $x \to \pm \infty$, $f(x) \approx \frac{x}{x^2} = \frac{1}{x}$, which has a horizontal asymptote at y = 0. Therefore f has also a horizontal asymptote at y = 0.
- 2. <u>Vertical asymptotes</u>: the denominator is $x^2 x 6 = (x 3)(x + 2)$, so f has vertical asymptotes at x = 3 and x = -2.
- 3. <u>x-intercepts</u>: the numerator is x 4, so the only x-intercept is x = 4 with multiplicity 1.

4. y-intercept:
$$f(0) = \frac{0-4}{0^2 - 0 - 6} = \frac{-4}{-6} = \frac{2}{3}$$



- 1. <u>End behaviour</u>: As $x \to \pm \infty$, $f(x) \approx \frac{2x}{x^3} = \frac{2}{x^2}$, which has a horizontal asymptote at y = 0. Therefore f has also a horizontal asymptote at y = 0.
- 2. <u>Vertical asymptotes</u>: the denominator is $x^3 - 13x + 12 = (x - 1)(x - 3)(x + 4)$, so fhas vertical asymptotes at x = 3 and x = -4 and x = 1.
- 3. <u>x-intercepts</u>: the numerator is 2x+5, so the only x-intercept is $x = -\frac{5}{2} = -2.5$ with multiplicity 1.
- 4. <u>*y*-intercept</u>: $f(0) = \frac{5}{12}$.



- 11. Given the following information about the rational function f(x), graph f(x) in the axes provided.
 - 1. <u>End behaviour</u>: Horizontal asymptote at y = 1.
 - 2. <u>End behaviour</u>: Vertical asymptotes:
 - At x = -3.
 - *x* = 3.
 - 3. \underline{x} -intercepts:
 - -2 with multiplicity 1.
 - 2 with multiplicity 1.
 - 4. <u>*y*-intercept</u>: f(0) = 1.
 - 5. <u>Symmetry</u>: f is an even function.

