SOLUTION

- 1. Recall that to show that a function g is the inverse of a function f one needs to show that f(g(x)) = x and that g(f(x)) = x. To do this,
 - 1. Find f(g(x)) and simplify and see that you get x.
 - 2. Find g(f(x)) and simplify and see that you get x.

For the following, show that g is the inverse of f.

a) f(x) = 4x - 7 and $g(x) = \frac{x+7}{4}$. b) $f(x) = \frac{2}{x-5}$ and $g(x) = \frac{2}{x} + 5$. c) f(x) = -3x + 1 and $g(x) = \frac{x-1}{-3}$. d) $f(x) = \frac{x-2}{2x+1}$ and $g(x) = \frac{-x-2}{2x-1} + 5$.

Solution:

a) 1.
$$f(g(x)) = f(\frac{x+7}{4}) = 4 \cdot \frac{x+7}{4} - 7 = (x+7) - 7 = x$$
. YES
2. $g(f(x)) = g(4x-7) = \frac{(4x-7)+7}{4} = \frac{4x}{4} = x$. YES.

b) 1.
$$f(g(x)) = f(\frac{2}{x} + 5) = \frac{2}{\left(\frac{2}{x} + 5\right) - 5} = \frac{2}{\frac{2}{x}} = x$$
. YES.
2. $g(f(x)) = g(\frac{2}{x-5}) = \frac{2}{\frac{2}{x-5}} + 5 = \frac{2(x-5)}{2} + 5 = (x-5) + 5 = x$. YES.

- c) and d): proceed in the same way.
- 2. Find the inverse of the following functions.
 - a) f(x) = 2x 1b) $g(x) = \frac{1}{x} + 1$ c) $h(x) = x^2 - 4$, with domain $(-\infty, 0]$ (so $x \le 0$) d) $i(x) = \frac{x - 1}{x + 1}$.

Solution:

a) We need to solve f(y) = x for y, i.e. solve 2y - 1 = x for y.

$$2y - 1 = x \Rightarrow 2y = x + 1 \Rightarrow y = \frac{x + 1}{2}.$$

Therefore the inverse of f is $f^{-1}(x) = \frac{x+1}{2}$ (or, if you prefer, $f^{-1}(y) = \frac{y+1}{2}$).

b) We need to solve g(y) = x for y, i.e. solve $\frac{1}{y} + 1 = x$ for y.

$$\frac{1}{y} + 1 = x \Rightarrow \frac{1}{y} = x - 1 \Rightarrow y = \frac{1}{x - 1}$$

Therefore the inverse of g is $g^{-1}(x) = \frac{1}{x-1}$.

c) We need to solve h(y) = x for y, i.e. solve $y^2 - 4 = x$ for y, where we know that $y \leq 0$.

$$y^2 - 4 = x \Rightarrow y^2 = x + 4 \Rightarrow y = \pm \sqrt{x + 4}$$

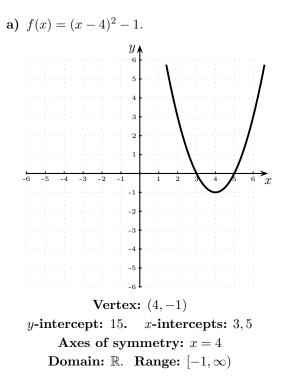
but since we know that y is negative, the only possible solution is $y = -\sqrt{x+4}$. Therefore the inverse of h is $h^{-1}(x) = -\sqrt{x+4}$.

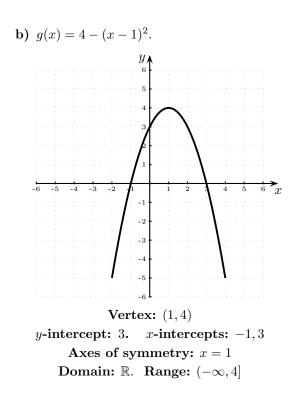
d) We need to solve i(y) = x for y, i.e. solve $\frac{y-1}{y+1} = x$ for y.

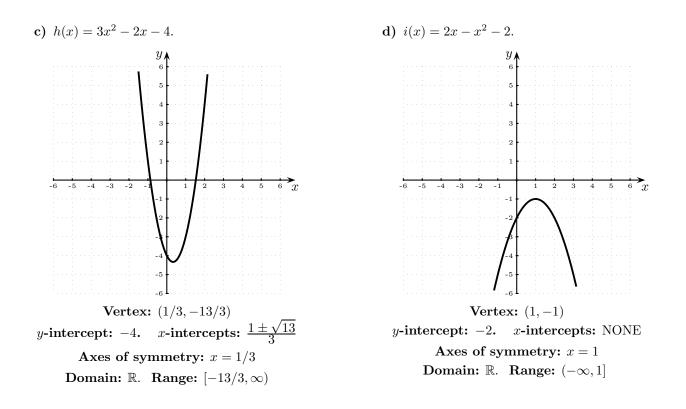
$$\frac{y-1}{y+1} = x \quad \Rightarrow \quad y-1 = x(y+1) \quad \Rightarrow \quad y-1 = xy+x \quad \Rightarrow \quad y-xy = x+1 \quad \Rightarrow \quad y(1-x) = x+1 \quad \Rightarrow \quad y = \frac{x+1}{1-x} = x+1$$

Therefore the inverse of *i* is $i^{-1}(x) = \frac{x+1}{1-x}$.

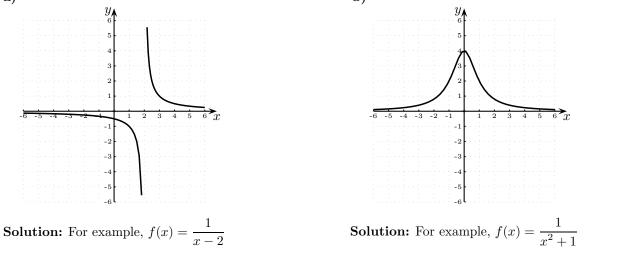
- **3.** Recall that the range of a function is the domain of its inverse. Using this fact, find the range of the functions f, g and h of the previous exercise.
- **a)** The domain of f^{-1} is \mathbb{R} , so the range of f is \mathbb{R} .
- **b)** The domain of g^{-1} is $(-\infty, 1) \cup (1, \infty)$. Therefore the range of g is $(-\infty, 1) \cup (1, \infty)$.
- c) The domain of h^{-1} is $[-4, \infty)$. Therefore the range of h is $[-4, \infty)$.
- 4. For the following quadratic functions,
- Find the vertex and x- and y-intercepts.
- Draw the graph in the graph paper provided (or on your own graph paper).
- Give the equation of the axes of symmetry.
- Determine the function's domain and range.







5. [BONUS] Use a graphing device to find functions whose graphs look roughly like the following. (HOW? Play!) a) b)



6. Find an angle between 0 and 2π that is coterminal with the following angles: a) $\frac{27\pi}{4}$ b) $\frac{7\pi}{4} + 5\pi$ c) $\frac{-13\pi}{2}$ a) $\frac{27\pi}{4} = \frac{27}{4}\pi = \left(6 + \frac{3}{4}\right)\pi = 6\pi + \frac{3\pi}{4}$, which is coterminal with $\frac{3\pi}{4}$. b) $\frac{7\pi}{4} + 5\pi = \frac{7\pi}{4} + \pi + 4\pi = \frac{11\pi}{4} + 4\pi$, which is coterminal with $\frac{11\pi}{4}$. c) $\frac{-13\pi}{3} = \left(-4 - \frac{1}{3}\right)\pi = -4\pi - \frac{\pi}{3}$, which is coterminal with $\frac{-\pi}{3}$, which is coterminal with $\frac{-\pi}{3} + 2\pi = \frac{5\pi}{3}$.