MATH 30 - Precalculus. Homework 1. Due Th. 02/07/2019. Professor Luis Fernández If you hand it in, please use this sheet for your graphs or short answers; **STAPLE** any additional sheets.

1. For the function f(x) = 3x - 5, find (and simplify when possible)

a) $f(3) =$	b) $f(-4) =$	c) $f(t) =$
d) $f(x+1) =$	e) $f(-x) =$	f) $f(x^2) =$

2. For the function $f(x) = \frac{3x}{2}$	$\frac{x^2-1}{x^2}$, find (and simplify when po	ssible)	
a) $f(2) =$	b) $f(-1) =$	c) $f(r) =$	
d) $f(x-1) =$	e) $f(-x) =$	f) $f(x^3) =$	

3. Make a table of values (take, for example, the integers between -6 and 6; you may want to use a calculator) and graph the following functions in the axes provided.

4. Use the given graph of the function g to answer the questions below.

a) Find g(-2) =
b) Find g(0) =
c) Find g(1) =
d) Find g(-3) =
e) Find g(4) =
f) Find g(7) =

y

g) Find the domain of g and write it in interval notation.

h) Find the range of g and write it in interval notation.

- **5.** Use the graph of the function f given below to find
- a) The domain of f.
- **b)** The range of f.
- c) The interval(s) where f is increasing.
- d) The interval(s) where f is decreasing.
- e) The interval(s) where f is constant.
- **f)** The relative maxima of f.
- g) The relative minima of f.

6. For the function $f(x) = x^2 - x + 1$, find and simplify the difference quotient $f(x) = \frac{f(x+h) - f(x)}{h}$.

7. Use the following procedure to determine whether the functions below are even, odd or neither:

To find whether the function f is even, odd, or neither,

- 1. Find f(-x) and simplify it (remember that, for example, $(-x)^2 = x^2$, and $(-x)^3 = -x^3$).
- 2. Compare f(-x) with f(x):
- If f(-x) = f(x) then the function is even.
- If f(-x) = -f(x) then the function is odd.
- If none of the above, the function is neither (most functions are neither).

a) $f(x) = x^2 + 4$.

b)
$$g(x) = \frac{x^3}{x^2 + 4}.$$

c) $h(x) = x^2 + x$.

8.	Convert from radians to degrees.	
	a) $\frac{\pi}{3} =$	b) $\frac{5\pi}{4} =$
	c) $\frac{5\pi}{6} =$	d) 3 =

- 9. Convert from degrees to radians.
 - a) $300^{\circ} =$ b) $135^{\circ} =$

