- [4] **1.** Find the **exact value** of
 - **a**) $\log_{64} 8 =$ **b**) $\log_3 \sqrt{3} =$

c)
$$8^{\log_8 49} =$$
 d) $\log_5 5^7 =$

[6] **2.** Find the **exact value** of

a)
$$\tan\left(\frac{5\pi}{6}\right) =$$
 b) $\sec\left(\frac{2\pi}{3}\right) =$ c) $\cos\left(-\frac{\pi}{4} - 1000\pi\right) =$

d)
$$\sin\left(\frac{17\pi}{6}\right) =$$
 e) $\cos\left(-\frac{7\pi}{3}\right) =$ f) $\tan\left(\frac{\pi}{4} + 15\pi\right) =$

[8] **3.** Graph the function $f(x) = 2^x$ and the function $g(x) = \log_2 x$ in the axes provided below.

[12] **4.** Solve the following equations. If necessary, leave the answer expressed in terms of logarithms (you do not need to use the calculator).

a) $7^{x+1} = 410$

b) $\log_2(x+2) - \log_2(x-5) = 3$

c) $\ln(x-4) + \ln(x+1) = \ln(x-8)$

[8] 5. Given that tan x = ⁵/₁₂, and that x lies in the first quadrant,
a) Find sin x.
b) Find cos x.

c) Find
$$\cot\left(\tan^{-1}\frac{5}{12}\right)$$
.
d) Find $\sec\left(\tan^{-1}\frac{5}{12}\right)$.

[8] **6.** Graph **two** cycles of the following functions in the axes provided.

a) $f(x) = \sin(2x)$

[6] 7. Find the domain of the function $\log_4(x^2-1)$.

[8] 8. Write an equation of the form $y = A\sin(Bx + C)$ for the sinusoidal curve whose graph is shown below.

[6] 9. Let the functions f and g be defined by f(x) = \frac{e^x + e^{-x}}{2} and g(x) = \frac{e^x - e^{-x}}{2}.
a) Prove that f(x) is an even function.

b) Prove that g(x) is an odd function.

c) Prove that $[f(x)]^2 - [g(x)]^2 = 1$.