MATH 30 - Precalculus.

## First test. Time allowed: one hour. Professor Luis Fernández

NAME:\_\_\_\_\_

- [8] **1.** Answer whether each of the following statements is true or false, and justify your answer. **NOTE:** answers without justification will **not** receive *any* credit.
  - a) The graph of a function can have two different *y*-intercepts.

**b**) The graph of a function can have no *x*-intercepts

c) The function  $f(x) = \frac{1}{x^2 + 3}$  is an even function.

d) The number 5 is in the domain of the function  $h(x) = \sqrt{3-x}$ .

[8] **2.** Find the inverse of the function  $f(x) = 1 + \frac{2}{x-3}$ .

[10] **3.** If  $f(x) = x^2 - 1$  and g(x) = 2x + 3 find (you do not need to simplify)

- **a)** (f+g)(x) =**b)**  $\left(\frac{f}{g}\right)(x) =$
- c)  $(f \circ g)(x) =$
- **d)**  $(g \circ f)(x) =$
- e)  $(g \circ f \circ g)(x) =$
- [12] **4.** Consider the functions  $f(x) = \frac{2}{x-1}$  and  $g(x) = 1 + \frac{2}{y}$ .
  - a) Find  $(f \circ g)(x)$  and  $(g \circ f)(x)$  and simplify in order to verify that g is the inverse of f.
  - **b)** Find the domain and range of f.
  - c) Find the domain and range of g.

[8] 5. Find the vertex and intercepts of the graph of the quadratic function  $f(x) = -2x^2 + 7x + 4$ . Do a sketch of the graph of f in the coordinate axes below.



[8] 6. Plot the graph of the function  $f(x) = -3x^6 - 3x^5 + 15x^4 - 9x^3 = -3x^3(x-1)^2(x+3)$ . It must be clear what is the end behaviour, the *y*-intercept, and the *x*-intercepts with their multiplicity. Use the axes below.



[10] 7. The following is the graph of the function f. In the coordinate axes given below, sketch the graph of the indicated functions. As a reference, the graph of f is given in each coordinate axes in light gray.

