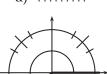
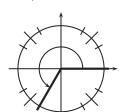
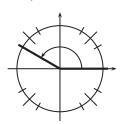

[8] 1. Draw the following angles in standard position in the circles provided.








[8] 2. Write, in the space provided, the value IN RADIANS of the angles given in the following pictures.

c)

[8] 3. Write the exact value (NO decimals) of

a)
$$\log_3 81 =$$

b)
$$\log_5 \sqrt[4]{5} =$$

c)
$$1023^{\log_{1023} 5} =$$

d)
$$\log_{4513} 4513^{13} =$$

[12] 4. Write the exact value (NO decimals) of

a)
$$\sin\left(\frac{\pi}{4}\right) =$$

b)
$$\cos\left(\frac{\pi}{3} - 20\pi\right) =$$

c)
$$\tan\left(\frac{\pi}{4}\right) =$$

d)
$$\sin\left(\frac{4\pi}{3}\right) =$$

e)
$$\sin\left(\frac{7\pi}{6}\right) =$$

$$\mathbf{f)} \cos \left(-\frac{3\pi}{4} + 5\pi \right) =$$

[4] 5. Condense the following logarithmic expressions (that is, write them using only one logarithm in the front).

a)
$$12\log a - 2\log b + 5\log c =$$

b)
$$\frac{\log x}{7} - \frac{3}{5} \log y =$$

[4] **6.** Expand the following logarithmic expressions (that is, write them using addition and subtraction of many logarithms).

a)
$$\log_8\left(\frac{x^{12}}{7}\right) =$$

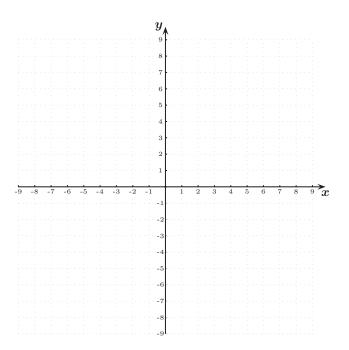
b)
$$\log_5 \left(\sqrt{2x^2 + y} \right) =$$

[18] **7.** Solve the following inequalities.

a)
$$\frac{x^2 + x - 6}{x + 1} \le 0$$

b)
$$x^3 - 4x^2 + 5x \ge 2$$

[21] 8. Solve the following three equations. If necessary, leave the answer expressed in terms of logarithms (you do not need to use the calculator).


a)
$$7^{2x-1} = 5$$

b)
$$\log_4(x) + \log_4(x - 6) = 2$$

c)
$$\log(3x-1) - \log(2x-3) = \log 2$$

- [15] **9.** Let $f(x) = 2^{x-1}$ and $g(x) = 1 + \log_2 x$.
 - a) Show that f and g are inverses of each other.

b) Graph f and g in the coordinate axes below.

- [11] ${f 10}$. Given that $\tan x = -\frac{6}{7}$, and that x lies in the second quadrant, find
 - a) $\sin x =$
- **b**) $\cos x =$
- c) $\sec x =$
- d) $\cot x =$
- e) $\csc x =$