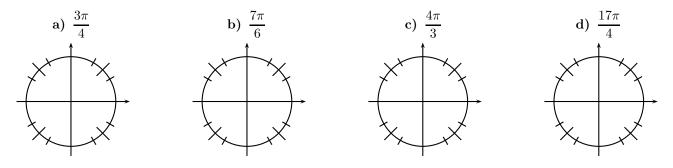
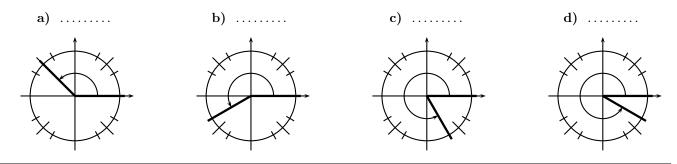
MATH 30 - Precalculus, Sec. 2495
Third test. Time allowed: two hours. Professor Luis Fernández
NAME:
[8] 1. Write the exact value (NO decimals) of


a) log₂₅ 5 =
b) log₇ ³√7 =

c)
$$87^{\log_{87} 12} =$$


d) $\log_{13} 13^{41} =$

[12] 2. Write the exact value (NO decimals) of a) $\tan\left(\frac{5\pi}{3}\right) =$ b) $\cos\left(\frac{\pi}{6}\right) =$ c) $\sin\left(\frac{\pi}{4} - 20\pi\right) =$ d) $\sin\left(\frac{5\pi}{6}\right) =$ e) $\sin\left(-\frac{\pi}{3}\right) =$ f) $\cos\left(\frac{3\pi}{4} + 15\pi\right) =$

[10] **3.** Draw the following angles in standard position in the circles provided.

[10] 4. Write, in the space provided, the value IN RADIANS of the angles given in the following pictures.

[4] 5. Condense the following logarithmic expressions (that is, write them using only one logarithm in the front).
 a) 7 log y + 2 log x =
 b) ¹/₄ log x - 3 log y =

[4] **6.** Expand the following logarithmic expressions (that is, write them using addition and subtraction of many logarithms).

a)
$$\log_5\left(\frac{x^5}{14}\right) =$$
 b) $\log_7\left(\sqrt{x^2+3}\right) =$

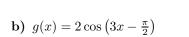
[18] **7.** Solve the following inequalities.

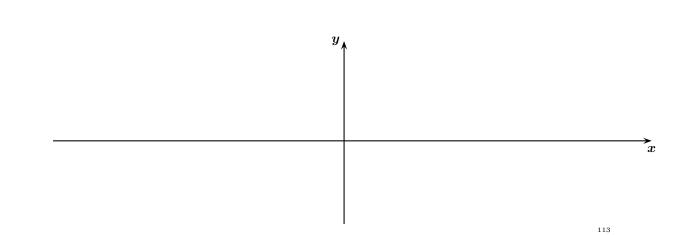
a) $x^3 - 2x^2 - x + 2 > 0$

b)
$$\frac{(x+4)(x-2)}{x(x+2)} \ge 0$$

[8] 8. Find the inverse of the function $f(x) = 3^{2x-5}$. What is the domain of the inverse?

[16] 9. Solve TWO of the following three equations. If necessary, leave the answer expressed in terms of logarithms (you do not need to use the calculator).


a) $3^{3x-1} = 81$


b) $\log_4(x) + \log_4(x - 15) = 2$

c) $\ln(3x-1) - \ln(7x-3) = \ln 2$

[5] 10. Given that $\tan x = -\frac{4}{3}$, and that x lies in the second quadrant, find a) $\sin x =$ b) $\cos x =$ c) $\sec x =$ d) $\cot x =$ e) $\csc x =$

- [18] **11.** Find the amplitude, the period and the phase shift, and graph **one** cycles of the following functions in the axes provided.
 - **a)** $f(x) = 2 \sin\left(x + \frac{\pi}{2}\right)$

 $y_{\mathbf{k}}$

 \mathbf{F}_x