MATH 30 - Precalculus, Sec. 2503

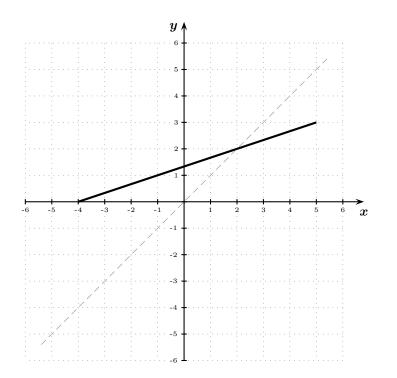
First test. Time allowed: two hours. Professor Luis Fernández

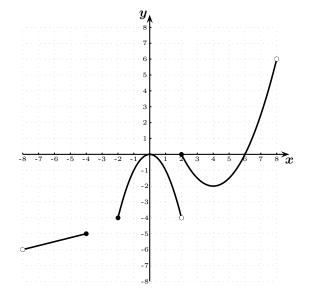
NAME:____

[20] **1.** Answer the following questions, justifying your answer.

a) Suppose that the functions f and g are inverses of each other. If f(3) = 6, how much is g(6), and why?

b) Let f be the function defined by: $f(x) = \begin{cases} -2x & \text{if } x \leq 3\\ x+2 & \text{if } x>3 \end{cases}$. Find f(-2), f(3), and f(5).

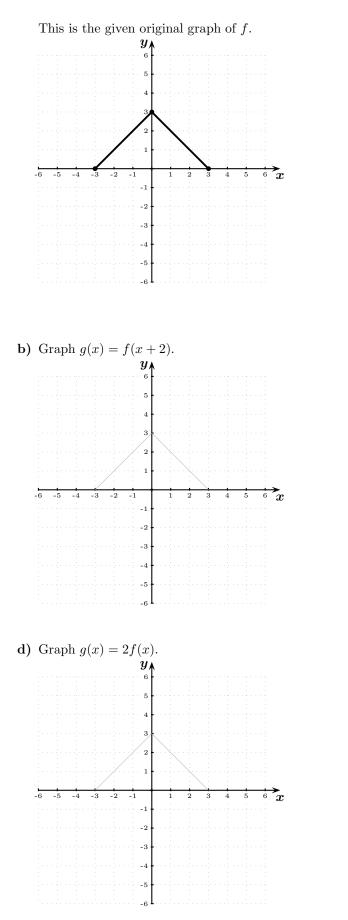

c) Is the function $f(x) = x^2 + 1$ injective, and why?

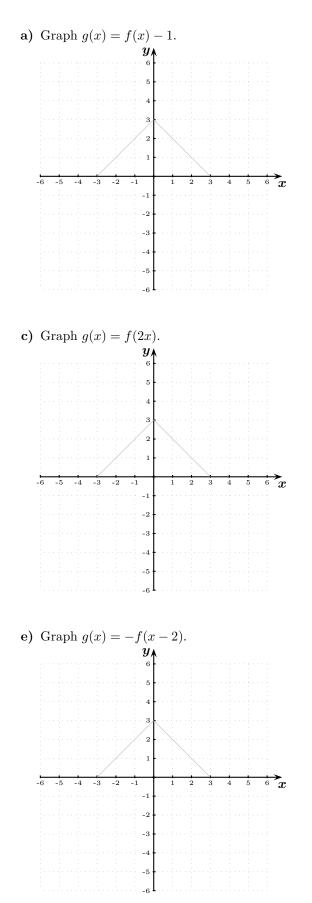

d) Is the function $f(x) = \frac{3x^2 - 7}{3x^2}$ even, odd or neither, and **why**?

[12] **2.** For f(x) = 4x - 1, find and simplify: $\frac{f(x+h) - f(x)}{h}$.

[16] **3.** Find the domain of the function $f(x) = \frac{1}{x-4} + \sqrt{x+2}$.

- [14] **4.** Use the graph of the function f given below to find
 - **a)** f(-1) =
 - **b)** f(2) =
 - **c)** $(f \circ f)(1) =$
 - d) The domain of f.
 - e) The range of f.
 - **f)** The interval(s) where f is increasing.
 - g) The interval(s) where f is decreasing.
 - **h)** The relative maxima of f.
 - i) The relative minima of f.
- [8] 5. The graph of the function h is given below. Sketch the graph of h^{-1} in the same coordinate axes.


- [16] **6.** Consider the functions $f(x) = 3 + \frac{4}{x}$ and $g(x) = \frac{4}{x-3}$.
 - **a)** Find $(f \circ g)(x)$ and $(g \circ f)(x)$ and simplify in order to verify that g is the inverse of f.
 - **b)** Find the domain of f.
 - c) Find the domain of g.


Recall that the range of a function is equal to the domain of its inverse. With this in mind, **d**) Find the range of *f*.

e) Find the range of g.

[15] **7.** If
$$f(x) = \frac{x-2}{3x}$$
, find $f^{-1}(x)$.

[10] 8. The following is the graph of the function f. In the coordinate axes given below, sketch the graph of the indicated functions. (As a reference, the graph of f is given in each coordinate axes in light gray.)

111