MTH30

Review sheet for Midterm 2

Professor Luis Fernandez

1. For each of the following rational functions f

A.
$$f(x) = \frac{x+1}{x-2}$$
 B. $f(x) = \frac{x^2+2x-3}{x^2-2x-3}$ C. $f(x) = \frac{x^2-9}{x^2-x-2}$ D. $f(x) = \frac{2-x}{x^2+x-2}$
E. $f(x) = \frac{x^2}{x^2+1}$

- (a) Factor numerator and denominator and simplify if possible.
- (b) Find the x and y intercepts of the graph of y = f(x) if they exist.
- (c) Find any vertical or horizontal asymptotes.
- (d) Use the above information to sketch a graph of y = f(x).
- 2. For the following functions, find f(-3), f(-2), f(-1), f(0), f(1), f(2), f(3). Then plot the points you got and sketch their graph.

A.
$$f(x) = 2^x$$
 B. $f(x) = 3^x$ C. $f(x) = (\frac{1}{2})^x$ D. $f(x) = 2^{-x}$

3. Convert the following from exponential form to logarithmic form.

A.
$$e^x = 5$$
. B. $4^{x+3} = 7$ C. $\left(\frac{1}{3}\right)^{2y+1} = x - 3$ D. $10^{x+2} = 14$.

4. Convert the following from exponential form to logarithmic form.

A. Ln y = 7. B. $\log_5(y+3) = x+7$ C. $\log_{\frac{1}{3}}(2y+1) = 5$ D. $\log(x+2) = 12$.

5. Expand

(a)
$$\log_7 (x^4 y^3)$$

(b) $\log_3 \frac{x^4 y^3}{z^2 w^8}$
(c) $\log (x^4 y^3)^5$
(d) $\log \sqrt[4]{\frac{10x^2 y^3}{5z}}$

(()

6. Condense

- (a) $3\log x + 7\log y$
- (b) $4 \log_4 x 5 \log_4 y + \log_4 z 3 \log_4 w$

(c)
$$\frac{1}{2} \ln x - \frac{2}{6} \ln y + \frac{3}{4} \ln z$$

(d) $\frac{1}{5} (2 \log x - \frac{1}{2} \log y + \frac{2}{3} \log z)$

7. Evaluate the following expressions. Give exact values whenever possible:

(a)
$$\log_2 \frac{1}{64}$$

(b) $\log_9 \frac{\sqrt{3}}{3}$

- (c) $\log_b x^3 y$, given that $\log_b x = 2$ and $\log_b y = 36$
- (d) e^{x-y} given that $e^x = 3$ and $e^y = 4$

(e)
$$\log_a\left(\frac{x}{y}\right)$$
 given that $\log_a(x) = 12$ and $\log_a(y) = 4$

- (f) $\ln e^{\sqrt{2}}$
- (g) $\log 1000$
- (h) $\log_7 31$, rounded to the nearest hundredth
- (i) $e^{\operatorname{Ln} 5}$
- (j) $\log_7 7^{124}$

8. Write the following logarithms in the indicated base. Simplify what you can.

- (a) $\log_5 7$, in base 7.
- (b) $\log_8 4$, in base 2.
- (c) $\log_6 10$, in base e.

9. Solve the following equations. If the answer is not an exact numbers, leave it expressed as a logarithm.

- (a) $7^{x+2} = 49$ (b) $4^{x+3} = 8^{2x-4}$ (c) $e^x = 2$
- (d) $3^{x+5} = 9 \cdot 3^{x+2}$
- (e) $\log_2 x \log_2(x-1) = 1$
- (f) $\log_3 x 2 = \log_3 4$
- (g) $\log_5(x+2) + \log_5(x+3) = \log_5(1-x)$
- (h) $4 + \log_2(9x) = 2$

Solutions

3. (a)
$$\log_7 (x^4 y^3) = 4 \log_7 x + 3 \log_7 y$$

(b) $\log_3 \frac{x^4 y^3}{z^2 w^8} = 4 \log_3 x + 3 \log_3 y - 2 \log_3 z - 8 \log_3 w$
(c) $\log (x^4 y^3)^5 = 5(4 \log x + 3 \log y)$
(d) $\log \sqrt[4]{\frac{10x^2 y^3}{5\sqrt{z}}} = \frac{1}{4} (\log 10 + 2 \log x + 3 \log y - \log 5 - \frac{1}{2} \log z)$
4. (a) $3 \log x + 7 \log y = \log(x^3 y^7)$
(b) $4 \log_4 x - 5 \log_4 y + \log_4 z - 3 \log_4 w = \log_4 \left(\frac{x^4 z}{y^5 w^3}\right)$
(c) $\frac{1}{2} \operatorname{Ln} x - \frac{5}{6} \operatorname{Ln} y + \frac{3}{4} \operatorname{Ln} z = \operatorname{Ln} \left(\frac{x^{\frac{1}{2}} z^{\frac{3}{4}}}{y^{\frac{3}{6}}}\right) \text{ or } \operatorname{Ln} \left(\frac{\sqrt{x} \sqrt[4]{x^3}}{\sqrt[6]{y^5}}\right)$
(d) $\frac{1}{5} (2 \log x - \frac{1}{2} \log y + \frac{2}{3} \log z) = \log \left(\sqrt[5]{\frac{x^2 \sqrt[3]{x^2}}{\sqrt{y}}}\right)$
5. (a) $\log_5 7$, in base 7 is $\frac{\log_7 7}{\log_7 5} = \frac{1}{\log_7 5}$
(b) $\log_8 4$, in base 2 is $\frac{\log_2 4}{\log_2 8} = \frac{2}{3}$
(c) $\log_6 10$, in base e is $\frac{\operatorname{Ln} 10}{\operatorname{Ln} 6}$
6. (a) -6
(b) $-\frac{1}{4}$
(c) 42
(d) $\frac{3}{4}$
(e) 8
(f) $\sqrt{2}$
(g) 3

- (g) 3
- (h) 1.76
- (i) 5
- (j) 124

7. Solve the following equations. If the answer is not an exact numbers, leave it expressed as a logarithm. (a) $7^{x+2} = 49$: Write it as $7^{x+2} = 7^2$. Solution is x = 0.

(b)
$$4^{x+3} = 8^{2x-4}$$
: Write it as $2^{2(x+3)} = 2^{3(2x-4)}$. Solution is $x = \frac{9}{2}$.

- (c) $e^x = 2$. Take Ln of both sides. It gives x = Ln 2.
- (d) $3^{x+5} = 9 \cdot 3^{2x+2}$. Take \log_3 of both sides to get x + 5 = 2 + (2x + 2), so that x = 1.
- (e) $\log_2 x \log_2(x-1) = 3$. Condense the LHS and write in exponential form to get $\frac{x}{x-1} = 2^3$. Solve this to get $x = \frac{8}{7}$.
- (f) $\log_3 x 2 = \log_3 4$. Move the 2 to the right, the $\log_3 4$ to the left, and condense the LHS to get $\log_3 \frac{x}{4} = 2$. Write in exponential form and solve the equation to get x = 36.

- (g) $\log_5(x+2) + \log_5(x+3) = \log_5(1-x)$. Condense the LHS and write in exponential form to get (x+2)(x+3) = 1-x. Expand, move everything to the LHS, and solve the resulting quadratic equation to get x = -1 and x = -5. Notice, however, that x = -5 cannot be a solution because when you substitute it in the LHS you get a logarithm of a negative number, which is undefined. The only solution is x = -1.
- (h) $4 + \log_2(9x) = 2$. Move the 4 to the LHS and write in exponential form to get $9x = 2^{-2}$, which gives $x = \frac{1}{36}$.