MTH30

Review sheet for Midterm 2

Professor Luis Fernandez

1. For each of the following rational functions f
A. $f(x)=\frac{x+1}{x-2}$
B. $f(x)=\frac{x^{2}+2 x-3}{x^{2}-2 x-3}$
C. $f(x)=\frac{x^{2}-9}{x^{2}-x-2}$
D. $f(x)=\frac{2-x}{x^{2}+x-2}$
E. $f(x)=\frac{x^{2}}{x^{2}+1}$
(a) Factor numerator and denominator and simplify if possible.
(b) Find the x and y intercepts of the graph of $y=f(x)$ if they exist.
(c) Find any vertical or horizontal asymptotes.
(d) Use the above information to sketch a graph of $y=f(x)$.
2. For the following functions, find $f(-3), f(-2), f(-1), f(0), f(1), f(2), f(3)$. Then plot the points you got and sketch their graph.
A. $f(x)=2^{x}$
B. $f(x)=3^{x}$
C. $f(x)=\left(\frac{1}{2}\right)^{x}$
D. $f(x)=2^{-x}$
3. Convert the following from exponential form to logarithmic form.
A. $e^{x}=5$.
B. $4^{x+3}=7$
C. $\left(\frac{1}{3}\right)^{2 y+1}=x-3$
D. $10^{x+2}=14$.
4. Convert the following from exponential form to logarithmic form.
A. $\operatorname{Ln} y=7$.
B. $\log _{5}(y+3)=x+7$
C. $\log _{\frac{1}{3}}(2 y+1)=5$
D. $\log (x+2)=12$.
5. Expand
(a) $\log _{7}\left(x^{4} y^{3}\right)$
(b) $\log _{3} \frac{x^{4} y^{3}}{z^{2} w^{8}}$
(c) $\log \left(x^{4} y^{3}\right)^{5}$
(d) $\log \sqrt[4]{\frac{10 x^{2} y^{3}}{5 z}}$
6. Condense
(a) $3 \log x+7 \log y$
(b) $4 \log _{4} x-5 \log _{4} y+\log _{4} z-3 \log _{4} w$
(c) $\frac{1}{2} \operatorname{Ln} x-\frac{2}{6} \operatorname{Ln} y+\frac{3}{4} \operatorname{Ln} z$
(d) $\frac{1}{5}\left(2 \log x-\frac{1}{2} \log y+\frac{2}{3} \log z\right)$
7. Evaluate the following expressions. Give exact values whenever possible:
(a) $\log _{2} \frac{1}{64}$
(b) $\log _{9} \frac{\sqrt{3}}{3}$
(c) $\log _{b} x^{3} y$, given that $\log _{b} x=2$ and $\log _{b} y=36$
(d) e^{x-y} given that $e^{x}=3$ and $e^{y}=4$
(e) $\log _{a}\left(\frac{x}{y}\right)$ given that $\log _{a}(x)=12$ and $\log _{a}(y)=4$
(f) $\ln e^{\sqrt{2}}$
(g) $\log 1000$
(h) $\log _{7} 31$, rounded to the nearest hundredth
(i) $e^{\operatorname{Ln} 5}$
(j) $\log _{7} 7^{124}$
8. Write the following logarithms in the indicated base. Simplify what you can.
(a) $\log _{5} 7$, in base 7 .
(b) $\log _{8} 4$, in base 2 .
(c) $\log _{6} 10$, in base e.
9. Solve the following equations. If the answer is not an exact numbers, leave it expressed as a logarithm.
(a) $7^{x+2}=49$
(b) $4^{x+3}=8^{2 x-4}$
(c) $e^{x}=2$
(d) $3^{x+5}=9 \cdot 3^{x+2}$
(e) $\log _{2} x-\log _{2}(x-1)=1$
(f) $\log _{3} x-2=\log _{3} 4$
(g) $\log _{5}(x+2)+\log _{5}(x+3)=\log _{5}(1-x)$
(h) $4+\log _{2}(9 x)=2$

Solutions

1. (a) A. $\frac{x+1}{x-2}$
B. $\frac{(x+3)(x-1)}{(x+1)(x-3)}$
C. $\frac{(x+3)(x-3)}{(x-2)(x+1)}$
D. $\frac{2-x}{(x+2)(x-1)}$
E. $\frac{x^{2}}{x^{2}+1}$
(b) x-intercepts:
A. $x=1$
B. x
B. $y=1$
C. $y=\frac{9}{2}$
D. $y=-1$
E. $y=0$
(c) Vertical asymptotes
A. $x=2$
B. $x=3, x=-1$
C. $x=2, x=-1$
D. $x=-2, x=1$
E. None
(d) Horizontal asymptotes
A. $y=1$
B. $y=1$
C. $y=1$
D. $y=0$
E. $y=1$
(e) The graphs:

B

D

2.
A. $f(-3)=\frac{1}{8}, f(-2)=\frac{1}{4}, f(-1)=\frac{1}{2}, f(0)=1, f(1)=2, f(2)=4, f(3)=8$.
B. $f(-3)=\frac{1}{27}, f(-2)=\frac{1}{9}, f(-1)=\frac{1}{3}, f(0)=1, f(1)=3, f(2)=9, f(3)=27$.
C. $f(-3)=8, f(-2)=4, f(-1)=2, f(0)=1, f(1)=\frac{1}{2}, f(2)=\frac{1}{4}, f(3)=\frac{1}{8}$.
D. Same as previous one, because $\left(\frac{1}{2}\right)^{x}=2^{-x}$.

The graphs:

3. (a) $\log _{7}\left(x^{4} y^{3}\right)=4 \log _{7} x+3 \log _{7} y$
(b) $\log _{3} \frac{x^{4} y^{3}}{z^{2} w^{8}}=4 \log _{3} x+3 \log _{3} y-2 \log _{3} z-8 \log _{3} w$
(c) $\log \left(x^{4} y^{3}\right)^{5}=5(4 \log x+3 \log y)$
(d) $\log \sqrt[4]{\frac{10 x^{2} y^{3}}{5 \sqrt{z}}}=\frac{1}{4}\left(\log 10+2 \log x+3 \log y-\log 5-\frac{1}{2} \log z\right)$
4. (a) $3 \log x+7 \log y=\log \left(x^{3} y^{7}\right)$
(b) $4 \log _{4} x-5 \log _{4} y+\log _{4} z-3 \log _{4} w=\log _{4}\left(\frac{x^{4} z}{y^{5} w^{3}}\right)$
(c) $\frac{1}{2} \operatorname{Ln} x-\frac{5}{6} \operatorname{Ln} y+\frac{3}{4} \operatorname{Ln} z=\operatorname{Ln}\left(\frac{x^{\frac{1}{2}} z^{\frac{3}{4}}}{y^{\frac{5}{6}}}\right)$ or $\operatorname{Ln}\left(\frac{\sqrt{x} \sqrt[4]{z^{3}}}{\sqrt[6]{y^{5}}}\right)$
(d) $\frac{1}{5}\left(2 \log x-\frac{1}{2} \log y+\frac{2}{3} \log z\right)=\log \left(\sqrt[5]{\frac{x^{2} \sqrt[3]{z^{2}}}{\sqrt{y}}}\right)$
5. (a) $\log _{5} 7$, in base 7 is $\frac{\log _{7} 7}{\log _{7} 5}=\frac{1}{\log _{7} 5}$
(b) $\log _{8} 4$, in base 2 is $\frac{\log _{2} 4}{\log _{2} 8}=\frac{2}{3}$
(c) $\log _{6} 10$, in base e is $\frac{\operatorname{Ln} 10}{\operatorname{Ln} 6}$
6. (a) -6
(b) $-\frac{1}{4}$
(c) 42
(d) $\frac{3}{4}$
(e) 8
(f) $\sqrt{2}$
(g) 3
(h) 1.76
(i) 5
(j) 124
7. Solve the following equations. If the answer is not an exact numbers, leave it expressed as a logarithm.
(a) $7^{x+2}=49:$ Write it as $7^{x+2}=7^{2}$. Solution is $x=0$.
(b) $4^{x+3}=8^{2 x-4}$: Write it as $2^{2(x+3)}=2^{3(2 x-4)}$. Solution is $x=\frac{9}{2}$.
(c) $e^{x}=2$. Take Ln of both sides. It gives $x=\operatorname{Ln} 2$.
(d) $3^{x+5}=9 \cdot 3^{2 x+2}$. Take $\log _{3}$ of both sides to get $x+5=2+(2 x+2)$, so that $x=1$.
(e) $\log _{2} x-\log _{2}(x-1)=3$. Condense the LHS and write in exponential form to get $\frac{x}{x-1}=2^{3}$. Solve this to get $x=\frac{8}{7}$.
(f) $\log _{3} x-2=\log _{3} 4$. Move the 2 to the right, the $\log _{3} 4$ to the left, and condense the LHS to get $\log _{3} \frac{x}{4}=2$. Write in exponential form and solve the equation to get $x=36$.
(g) $\log _{5}(x+2)+\log _{5}(x+3)=\log _{5}(1-x)$. Condense the LHS and write in exponential form to get $(x+2)(x+3)=1-x$. Expand, move everything to the LHS, and solve the resulting quadratic equation to get $x=-1$ and $x=-5$. Notice, however, that $x=-5$ cannot be a solution because when you substitute it in the LHS you get a logarithm of a negative number, which is undefined. The only solution is $x=-1$.
(h) $4+\log _{2}(9 x)=2$. Move the 4 to the LHS and write in exponential form to get $9 x=2^{-2}$, which gives $x=\frac{1}{36}$.

