8.2. Simplify radical expressions Professor Luis Fernández

Radical expressions.

Recall: A radical expression is a mathematical expression involving roots (aka radicals). For example,

$$
\sqrt{12 x^{3} y^{4}} \quad \sqrt{\frac{50 x^{3} y^{5}}{28 z^{2}}} \quad \sqrt[3]{24}-5 \sqrt[3]{8}
$$

are all radical expressions.
Same as we simplified polynomial expressions or rational expressions, we will now learn how to simplify radical expressions.

Simplifying simple radical expressions

Recall: The product property of exponents says

$$
(x y)^{n}=x^{n} y^{n}
$$

A from this property one can see that there is a similar property for roots:

$$
\sqrt[n]{x \cdot y}=\sqrt[n]{x} \cdot \sqrt[n]{y}
$$

This property gives the first way for simplifying roots. For example,

$$
\sqrt{20}=\sqrt{4 \cdot 5}=\sqrt{4} \cdot \sqrt{5}=2 \sqrt{5}
$$

Thus, we can rewrite $\sqrt{20}$ in a simpler form as $2 \sqrt{5}$.
Example: Simplify $\sqrt{50}$.
50 can be written as $25 \cdot 2$, and $25=5^{2}$. Therefore, $\sqrt{50}=\sqrt{25 \cdot 2}=\sqrt{25} \cdot \sqrt{2}=5 \sqrt{2}$.
Example: Simplify $\sqrt{40}$.
40 can be written as $4 \cdot 10$, and $4=2^{2}$. Therefore, $\sqrt{40}=\sqrt{4 \cdot 10}=\sqrt{4} \cdot \sqrt{10}=2 \sqrt{10}$.
Thus, to simplify the square root of a number,

- Find the greatest factor of the radicand that is a perfect square (that is, the square of a whole number).
- Rewrite the radicand using that factor, split the square root into the product of two square roots, and simplify.
Sometimes it is easier to do it in steps. Just find a factor of the radicand that is a perfect square and do the procedure above. Then, for the remaining radical, repeat the procedure until the remaining radicand has no factors that are perfect squares.

Example: Simplify $\sqrt{80}$.
$80=4 \cdot 20$, so $\sqrt{80}=\sqrt{4} \cdot \sqrt{20}=2 \sqrt{20}$.
Now, $20=4 \cdot 5$, so $2 \sqrt{20}=2 \sqrt{4} \cdot \sqrt{5}=2 \cdot 2 \sqrt{5}=4 \sqrt{5}$. Therefore, $\sqrt{80}=4 \sqrt{5}$.
Of course, it woul have been faster if we had written $80=16 \cdot 5$, but that is harder unless you see it immediately. It is easier to do simple steps.

Exercises: Simplify the following radicals:

1. $\sqrt{8}$
2. $\sqrt{12}$
3. $\sqrt{18}$
4. $\sqrt{20}$
5. $\sqrt{24}$
6. $\sqrt{26}$
7. $\sqrt{27}$
8. $\sqrt{28}$
9. $\sqrt{30}$
10. $\sqrt{32}$
11. $\sqrt{42}$
12. $\sqrt{44}$
13. $\sqrt{45}$
14. $\sqrt{63}$
15. $\sqrt{75}$
16. $\sqrt{96}$

The same procedure can be used to simplify roots of any index:
Example: Simplify $\sqrt[4]{48}$.
48 can be written as $16 \cdot 4$, and $16=2^{4}$, so that $\sqrt[4]{16}=2$. Therefore, $\sqrt[4]{48}=\sqrt[4]{16 \cdot 3}=\sqrt[4]{16} \cdot \sqrt[4]{3}=2 \sqrt[4]{3}$.
So, in general, to simplify $\sqrt[n]{x}$,

- Write x as $a^{n} \cdot b$ (if possible). If it is not possible, then it cannot be simplified further.
- Then $\sqrt[n]{x}=\sqrt[n]{a^{n}} \sqrt[n]{b}=a \sqrt[n]{b}$.

Exercises: Simplify the following radicals:
17. $\sqrt[3]{24}$
18. $\sqrt[3]{250}$
19. $\sqrt[3]{54}$
20. $\sqrt[3]{75}$
21. $\sqrt[5]{64}$
22. $\sqrt[4]{48}$
23. $\sqrt[3]{250}$
24. $\sqrt[3]{2000}$

When the expressions have variables, it is actually easier. For example, $\sqrt{x^{3}}=\sqrt{x^{2} \cdot x}=\sqrt{x^{2}} \cdot \sqrt{x}=|x| \sqrt{x}$ (do not forget the absolute value when the index is even.

Example: Simplify $\sqrt{x^{11}}$.
We can write x^{11} as $x^{10} \cdot x$. Therefore $\sqrt{x^{11}}=\sqrt{x^{10}} \cdot \sqrt{x}=\left|x^{5}\right| \sqrt{x}$.
Example: Simplify $\sqrt[3]{x^{11}}$.
We can write x^{11} as $x^{9} \cdot x^{2}$. Therefore $\sqrt[3]{x^{11}}=\sqrt[3]{x^{9}} \cdot \sqrt[3]{x^{2}}=x^{3} \sqrt[3]{x^{2}}$.
If there are several variables, or variables and numbers, do each one separately and then multiply the results.
Example: Simplify $\sqrt{x^{5} y^{7}}$.
Since $5=4+1, \sqrt{x^{5}}=\sqrt{x^{4} \cdot x}=\sqrt{x^{4}} \cdot \sqrt{x}=\sqrt{\left(x^{2}\right)^{2}} \cdot \sqrt{x}=\left|x^{2}\right| \sqrt{x}$.
Also, since $7=6+1, \sqrt{y^{7}}=\sqrt{y^{6}} \cdot \sqrt{y}=\sqrt{\left(y^{3}\right)^{2}} \cdot \sqrt{y}=\left|y^{3}\right| \sqrt{y}$.
Therefore, $\sqrt{x^{5} y^{7}}=\sqrt{x^{5}} \sqrt{y^{7}}=\left|x^{2}\right|\left|y^{3}\right| \sqrt{x y}$.
Example: Simplify $\sqrt[3]{24 x^{5} y^{7}}$.
Do $\sqrt[3]{24}, \sqrt[3]{x^{5}}$, and $\sqrt[3]{y^{7}}$ separately: $\quad \sqrt[3]{24}=\sqrt[3]{8 \cdot 3}=\sqrt[3]{8} \cdot \sqrt[3]{3}=2 \sqrt[3]{3}$.
$\sqrt[3]{x^{5}}=\sqrt[3]{x^{3} \cdot x^{2}}=\sqrt[3]{x^{3}} \cdot \sqrt[3]{x^{2}}=x \sqrt[3]{x^{2}} . \quad \sqrt[3]{y^{7}}=\sqrt[3]{y^{6} \cdot y}=\sqrt[3]{y^{6}} \cdot \sqrt[3]{y}=y^{2} \sqrt[3]{y}$
Putting it all together, $\sqrt[3]{24 x^{5} y^{7}}=2 x y^{2} \sqrt[3]{3 x^{2} y}$.
Exercises: Simplify the following radicals:
25. $\sqrt{x^{9}}$
26. $\sqrt{y^{5}}$
27. $\sqrt{z^{21}}$
28. $\sqrt{18 x^{5}}$
29. $\sqrt{12 x^{13}}$
30. $\sqrt{50 x^{7} y^{4}}$
31. $\sqrt{15 x^{3} y^{9} z^{5}}$
32. $\sqrt{20 x^{5} y^{9}}$
33. $\sqrt[3]{x^{4}}$
34. $\sqrt[3]{y^{7}}$
35. $\sqrt[3]{z^{5}}$
36. $\sqrt[3]{x^{25}}$
37. $\sqrt[5]{x^{13}}$
38. $\sqrt[4]{32 x^{9}}$
39. $\sqrt[3]{24 x^{5} y^{10}}$
40. $\sqrt[3]{4000 x^{91}}$

Simplifying radicals of fractions

Recall: The quotient rule for exponents says

$$
\left(\frac{x}{y}\right)^{n}=\frac{x^{n}}{y^{n}} \quad \text { or } \quad \frac{x^{n}}{y^{n}}=\left(\frac{x}{y}\right)^{n}
$$

The equivalent rule for roots is

$$
\sqrt[n]{\frac{x}{y}}=\frac{\sqrt[n]{x}}{\sqrt[n]{y}} \quad \text { or } \quad \frac{\sqrt[n]{x}}{\sqrt[n]{y}}=\sqrt[n]{\frac{x}{y}}
$$

Therefore, to simplify the $n^{\text {th }}$ root of a fraction we can just find the $n^{\text {th }}$ root of the numerator and the $n^{\text {th }}$ root of the denominator.
Example: Simplify $\sqrt{\frac{45}{20}}$.
Let us first simplify the fraction: $\frac{45}{20}=\frac{45^{9}}{2 \varrho_{4}}=\frac{9}{4}$. Therefore $\sqrt{\frac{45}{20}}=\sqrt{\frac{9}{4}}=\frac{\sqrt{9}}{\sqrt{4}}=\frac{3}{2}$.
Example: Simplify $\sqrt{\frac{14 x^{7}}{72 x^{3}}}$.
Let us first simplify the fraction: $\frac{14 x^{7}}{72 x^{3}}=\frac{14^{7} x^{7-3}}{\frac{72}{36}}=\frac{7 x^{4}}{36}$. Therefore $\sqrt{\frac{14 x^{7}}{72 x^{3}}}=\frac{\sqrt{7} \sqrt{x^{4}}}{\sqrt{36}}=\frac{\sqrt{7} x^{2}}{6}$.
Example: Simplify $\sqrt[3]{\frac{16 x^{8}}{54 x^{5}}}$.
Let us first simplify the fraction: $\frac{16 x^{8}}{54 x^{5}}=\frac{16^{8} x^{8-5}}{54}=\frac{8 x^{3}}{27}$. Therefore $\sqrt[3]{\frac{16 x^{8}}{54 x^{5}}}=\frac{\sqrt[3]{8} \sqrt[3]{x^{3}}}{\sqrt[3]{27}}=\frac{2 x}{3}$.
So you can see that to simplify the radical of a fraction,

- Simplify the fraction in the radicand, if possible.
- Use the Quotient Property to rewrite the radical as the quotient of two radicals.
- Simplify the radicals in the numerator and the denominator.

Exercises: Simplify the following radicals:
41. $\sqrt{\frac{45}{80}}$
42. $\sqrt[3]{\frac{16}{27}}$
43. $\sqrt[3]{\frac{24}{81}}$
44. $\sqrt[4]{\frac{32}{162}}$
45. $\sqrt{\frac{x^{10}}{x^{6}}}$
46. $\sqrt[3]{\frac{y^{11}}{y^{2}}}$
47. $\sqrt[5]{\frac{x^{12}}{x^{7}}}$
48. $\sqrt[6]{\frac{y^{30}}{y^{12}}}$
49. $\sqrt{\frac{50 x^{7}}{98 x^{3}}}$
50. $\sqrt[3]{\frac{15 x^{5}}{40 x^{3}}}$
51. $\sqrt{\frac{54 x^{5}}{450 x}}$
52. $\sqrt[4]{\frac{10 x^{9}}{32 x}}$

