7.1. Multiply and divide rational expressions Professor Luis Fernández

Rational expressions. Simplifying rational expressions.

A rational expression is a mathematical expression that can be written in the form $\frac{p}{q}$, where p and q are polynomials. For example

$$
\frac{x^{2}+1}{x+5} \quad \frac{x^{5}-6 x+1}{x^{3}+5} \quad \frac{1}{x^{3}+5} \quad \frac{(x+2)(x-1)}{(x-3)(x-2)} \quad 3 x+1\left(=\frac{3 x+1}{1}\right) .
$$

Rational expressions are just fractions of polynomials, so they have similar properties as fractions of numbers. In particular, they can be simplified: Recall that a fraction is in simplified form if the numerator and the denominator have no common factors. For example,

$$
\begin{aligned}
& \frac{12}{16} \text { is not simplified because } 4 \text { is a common factor of } 12 \text { and } 16 \text {, whereas } \\
& \frac{5}{6} \text { is simplified because } 5 \text { and } 6 \text { have no common factors (besides } 1 \text {, of course) }
\end{aligned}
$$

Recall: to simplify a fraction one has to divide the numerator and the denominator by the greatest common factor. For example, dividing numerator and denominator by 4 we get $\frac{12}{16}=\frac{3}{4}$.

Another way of doing this is to rewrite the original fraction as a product, and then cancel out those terms that appear both in the numerator and the denominator:

$$
\frac{12}{16}=\frac{4 \cdot 3}{4 \cdot 4}=\frac{4 \cdot 3}{4 \cdot 4}=\frac{3}{4}
$$

Exactly the same method is used to simplify rational expressions. For example, to simplify $\frac{(3 x+1)(x-3)}{(3 x+1)(x-2)}$, do

$$
\frac{(3 x+1)(x-3)}{(3 x+1)(x-2)}=\frac{(3 x+1)(x-3)}{(3 x+1)(x-2)}=\frac{x-3}{x-2}
$$

Note that in order to do this we first need to factor the numerator and the denominator. For example,
Example: Simplify (if possible) the rational expression $\frac{x^{2}-5 x+6}{x^{2}-4}$.
First let us factor the numerator and the denominator. $x^{2}-5 x+6$ is factored as $x^{2}-5 x+6=(x-3)(x-2)$, and $x^{2}-4$ is a difference of squares: $x^{2}-4=(x+2)(x-2)$. Therefore the rational expression can be written as

$$
\frac{x^{2}-5 x+6}{x^{2}-4}=\frac{(x-3)(x-2)}{(x+2)(x-2)}=\frac{(x-3)(x-2)}{(x+2)(x-2)}=\frac{x-3}{x+2} .
$$

Example: Simplify (if possible) the rational expression $\frac{6 x^{4}-18 x^{3}+12 x^{2}}{3 x^{5}-12 x^{3}}$.
First let us factor the numerator. In $6 x^{4}-18 x^{3}+12 x^{2}$ we notice that $6 x^{2}$ is a common factor of all the terms, so we factor it out: $6 x^{4}-18 x^{3}+12 x^{2}=6 x^{2}\left(x^{2}-3 x+2\right)$. Then notice the the second factor, that is, $x^{2}-3 x+2$, can be factored as $x^{2}-3 x+2=(x-1)(x-2)$. Therefore the numerator is completely factored as

$$
6 x^{4}-18 x^{3}+12 x^{2}=6 x^{2}(x-1)(x-2)
$$

For the denominator, $3 x^{3}$ is a common factor of all the terms of $3 x^{5}-12 x^{3}$, and we get $3 x^{5}-12 x^{3}=3 x^{3}\left(x^{2}-4\right)$. Then notice that the second factor, that is, $x^{2}-4$, is a difference of squares: $x^{2}-4=(x+2)(x-2)$. Therefore we have

$$
\frac{6 x^{4}-18 x^{3}+12 x^{2}}{3 x^{5}-12 x^{3}}=\frac{6 x^{2}(x-1)(x-2)}{3 x^{3}(x+2)(x-2)}=\frac{2 \cdot 3 \cdot x^{2}(x-1)(x-2)}{3 \cdot x \cdot x^{2}(x+2)(x-2)}=\frac{2 \cdot x \cdot x^{2}(x-1)(x-2)}{3 \cdot x \cdot x^{2}(x+2)(x-2)}=\frac{2(x-1)}{x(x+2)}
$$

Note that some rational expressions cannot be simplified. For example, $\frac{x^{2}+4 x+4}{x^{2}+4 x+3}=\frac{(x+2)(x+2)}{(x+3)(x+1)}$, which has no common factors between the numerator and the denominator. In this case, just leave the numerator and denominator factored and you are done.
Note also: sometimes the numerator and denominator have factors that are equal except for the sign. For example,

$$
\frac{(x+3)(x-2)}{(x+4)(2-x)}
$$

Note that $(x-2)$ and $(2-x)$ is the same factor except for the sign. In other words, we can write $(2-x)=-1 \cdot(x-2)$. Then we can simplify:

$$
\frac{(x+3)(x-2)}{(x+4)(2-x)}=\frac{(x+3)(x-2)}{(x+4) \cdot(-1) \cdot(x-2)}=\frac{(x+3)(x-2)}{(x+4) \cdot(-1) \cdot(x-2)}=\frac{x+3}{(-1)(x+4)}=-\frac{x+3}{x+4} .
$$

Summarizing, to simplify a rational expression,

- Factor the numerator and the denominator completely.
- Cancel common factors.

Practice exercises: Simplify, if possible, the following rational expressions.

1. $\frac{(x+2)(x-3)}{(x+2)(x-5)}$
2. $\frac{\left.(x+4)\left(x^{2}+1\right)\right)}{\left(x^{2}+1\right)(x-5)}$
3. $\frac{16(x+5)^{2}(x-3)}{12(x+2)^{2}(x+5)}$
4. $\frac{x^{3}-2 x^{2}-25 x+50}{x^{2}-5 x}$
5. $\frac{x^{2}+8 x+15}{x^{2}-9} x$
6. $\frac{x^{2}+2 x-15}{x^{2}+6 x+5}$
7. $\frac{49-x^{2}}{x^{2}+8 x+7}$
8. $\frac{x-7}{7-x}$
9. $\frac{x^{2}+7 x+12}{x^{2}+3 x+2}$
10. $\frac{-5 x^{2}-10 x}{-10 x^{2}+30 x+100}$

Multiplication of rational expressions

To multiply rational expressions proceed exactly as with fractions of numbers: multiply the numerators, multiply the denominators, and then simplify.
Example: Multiply $\frac{x+3}{x-2} \cdot \frac{x-2}{x+5}$.

$$
\frac{x+3}{x-2} \cdot \frac{x-2}{x+5}=\frac{(x+3)(x-2)}{(x-2)(x+5)}=\frac{(x+3)(x-2)}{(x-2)(x+5)}=\frac{x+3}{x+5}
$$

Example: Multiply $\frac{x^{2}+4 x+4}{x^{2}-9} \cdot \frac{x^{2}+4 x+3}{x^{2}+x-2}$.
Start by factoring all the polynomials:

$$
\begin{array}{ll}
x^{2}+4 x+4=(x+2)^{2} & x^{2}-9=(x+3)(x-3) \\
x^{2}+4 x+3=(x+3)(x+1) & x^{2}+x-2=(x+2)(x-1)
\end{array}
$$

Therefore we can write

$$
\begin{aligned}
& \frac{x^{2}+4 x+4}{x^{2}-9} \cdot \frac{x^{2}+4 x+3}{x^{2}+x-2}=\frac{(x+2)(x+2)}{(x+3)(x-3)} \cdot \frac{(x+3)(x+1)}{(x+2)(x-1)} \\
& \quad=\frac{(x+2)(x+2)(x+3)(x+1)}{(x+3)(x-3)(x+2)(x-1)}=\frac{(x+2)(x+2)(x+3)(x+1)}{(x+3)(x-3)(x+2)(x-1)}=\frac{(x+2)(x+1)}{(x-3)(x-1)}
\end{aligned}
$$

Practice exercises: Multiply and simplify.
11. $\frac{x+2}{x-3} \cdot \frac{x+1}{x+2}$
12. $\frac{(x+4)(x+3)}{(x-2)(x-5)} \cdot \frac{(x+4)(x-5)}{(x+3)(x+5)}$
13. $\frac{x^{2}+5 x+6}{x^{2}+2 x-3} \cdot \frac{x^{2}+7 x+12}{x+2}$
14. $\frac{x^{2}+3 x}{x^{2}-3 x-4} \cdot \frac{(x-4)(x-5)}{x^{2}}$
15. $\frac{72 x-12 x^{2}}{8 x+32} \cdot \frac{x^{2}+10 x+24}{36 x^{2}-1}$
16. $\frac{3 x^{2}+15 x}{x^{2}+10 x+25} \cdot \frac{1}{6 x^{2}+30 x}$

Division of rational expressions

To multiply rational expressions, also proceed exactly as with fractions of numbers: change the fraction after the division sign to its reciprocal, change the division sign to a multiplication sign, and then multiply as before.
Example: Divide: $\frac{x+3}{x-1} \div \frac{x+3}{x+5}$.

$$
\frac{x+3}{x-1} \div \frac{x+3}{x+5}=\frac{x+3}{x-1} \cdot \frac{x+5}{x+3}=\frac{(x+3)(x+5)}{(x-1)(x+3)}=\frac{(x+3)(x+5)}{(x-1)(x+3)}=\frac{x+5}{x-1}
$$

Example: Divide $\frac{x^{2}-9}{x^{2}+4 x+4} \div \frac{x^{2}+4 x+3}{x^{2}+x-2}$.
Start by factoring all the polynomials:

$$
\begin{array}{ll}
x^{2}+4 x+4=(x+2)^{2} & x^{2}-9=(x+3)(x-3) \\
x^{2}+4 x+3=(x+3)(x+1) & x^{2}+x-2=(x+2)(x-1)
\end{array}
$$

Therefore we can write

$$
\begin{aligned}
& \frac{x^{2}-9}{x^{2}+4 x+4} \div \frac{x^{2}+4 x+3}{x^{2}+x-2}=\frac{x^{2}-9}{x^{2}+4 x+4} \cdot \frac{x^{2}+x-2}{x^{2}+4 x+3}=\frac{(x+3)(x-3)}{(x+2)(x+2)} \cdot \frac{(x+2)(x-1)}{(x+3)(x+1)} \\
&=\frac{(x+3)(x-3)(x+2)(x-1)}{(x+2)(x+2)(x+3)(x+1)}=\frac{(x+3)(x-3)(x+2)(x-1)}{(x+2)(x+2)(x+3)(x+1)}=\frac{(x-3)(x-1)}{(x+2)(x+1)}
\end{aligned}
$$

Note: one can write division using the symbol " \div " or using a fraction sign, as in $\frac{8}{4}=8 \div 4$. So another way to write division of rational expressions is, for example,

$$
\frac{\frac{4 x}{x-3}}{\frac{6 x^{2}}{x+2}}
$$

If you prefer, you can rewrite it using the symbol " \div " and then proceed as before. In this case, it would be $\frac{4 x}{x-3} \div \frac{6 x^{2}}{x+2}$. You can also jump directly and multiply the numerator of the big fraction by the reciprocal of the denominator of the big fraction.
Practice exercises: Divide and simplify.
17. $\frac{x+2}{x-1} \div \frac{x+2}{x+5}$
18. $\frac{(x-3)(x+3)}{(x-7)(x-6)} \div \frac{(x-3)(x-5)}{(x-7)(x+5)}$
19. $\frac{x^{2}+5 x+6}{x^{2}+7 x+12} \div \frac{x+2}{x^{2}+2 x-3}$
20. $\frac{\frac{x^{2}-4 x}{x^{2}-3 x-10}}{\frac{(x-4)}{x^{2}(x-5)}}$
21. $\frac{\frac{12 x-72 x^{2}}{8 x-32}}{\frac{x^{2}-36}{x^{2}-10 x+24}}$
22. $\frac{\frac{1}{x^{2}-10 x+25}}{\frac{1}{5 x^{3}-25 x^{2}}}$

