6.5. Polynomial equations Professor Luis Fernández

Polynomial equations

A polynomial equation is an equation that involves a polynomial. For example, $x^{2}+3 x-4=0$ is a polynomial equation.
The degree of a polynomial equation is the degree of the polynomial involved. For example, $x^{2}+3 x-4=0$ is an equation of degree 2 .

- Equations of degree 2 are also called quadratic.
- Equations of degree 3 are also called cubic. Thus, $x^{2}+x=5$ is a quadratic equation and $x^{3}+5 x-5=x^{2}$ is a cubic equation, whereas $x^{4}+5 x^{3}-4 x=7$ is an equation of degree 4 .

In this course we will learn how to solve quadratic equations. The first method we will learn involves factoring. The idea is a property of numbers:

$$
\text { If } a \cdot b=0 \text {, then either } a=0 \text { or } b=0 \text { (or both). }
$$

Thus, if we have an equation where the left hand side is a factored polynomial and the right hand side is 0 , to find the solution we only have to set each factor equal to 0 and solve the simple equations we get. For example
Example: Solve $x^{2}-5 x+6=0$.
Let us factor the polynomial: we have $x^{2}-5 x+6=(x-2)(x-3)$. Thus we can rewrite the equation as

$$
(x-2)(x-3)=0
$$

But then this implies that either $x-2=0$ or $x-3=0$. Solving these two equations gives $x=2$ or $x=3$. Thus, the solutions of $x^{2}-5 x+6=0$ are $x=2$ and $x=3$.
One can check that these are solutions: $3^{2}-5 \cdot 3+6=9-15+6=0$ and $2^{2}-5 \cdot 2+6=4-10+6=0$.
NOTE: The zero product property only works when the right hand side is 0 !! If it is not 0 , move all the terms to the left hand side using the usual rules.

Example: Solve $x^{2}-10=3 x$.
First, we need to write the equation with 0 on the right hand side. To do this, subtract $3 x$ from both sides to get $x^{2}-3 x-10=0$. Now let us factor the polynomial: $x^{2}-3 x-10=(x-5)(x+2)$. Thus we can rewrite the equation as $(x-5)(x+2)=0$. This means that either $x-5=0$, which gives $x=5$, or $x+2=0$, which gives $x=-2$. Thus the solutions are $x=5$ and $x=-2$.
Let us check if $x=5$ and $x=-2$ are solutions of $x^{2}-10=3 x$. For $x=5$, the LHS equals $5^{2}-10=25-10=15$, and the RHS is $3 \cdot 5=15$ also, so $x=5$ is a solution. For $x=-2$, the LHS equals $(-2)^{2}-10=4-10=-6$, and the RHS is $3 \cdot(-2)=-6$ also, so $x=-2$ is a solution.
Summarizing, to solve a quadratic equation by factoring,

1. Write the quadratic equation in standard form, $a x^{2}+b x+c=0$.
2. Factor the quadratic expression on the left.
3. Use the Zero Product Property (that is, set each factor equal to 0).
4. Solve the two linear equations you obtained in 3 .
5. Check. Substitute each solution separately into the original equation.

This method also works with equations of any degree as long as the polynomial is factored.

Example: Solve the equation $(x+3)(x-4)(2 x-3)(4 x+1)=0$.
Since the polynomial is factored, we can use the zero product property immediately: one of the four factors of the polynomial has to be 0 . Thus we have

$$
x+3=0 \quad \text { or } \quad x-4=0 \quad \text { or } \quad 2 x-3=0 \quad \text { or } \quad 4 x+1=0,
$$

which, solving the equations, gives

$$
x=-3 \quad \text { or } \quad x=4 \quad \text { or } \quad x=\frac{3}{2} \quad \text { or } \quad x=-\frac{1}{4} .
$$

Thus the equation has four solutions: $-3,4,3 / 2$ and $-1 / 4$.
Practice exercises: Solve the following equations.

1. $x^{2}-6 x+8=0$
2. $x^{2}+9 x+18=0$
3. $x^{2}-5 x+6=0$
4. $x^{2}-10=3 x$
5. $x^{2}+4 x=12$
6. $x^{2}=7 x+8$
7. $(x+2)(x-3)(3 x-5)=0$
8. $x^{2}=9$
9. $4 x^{4}-20 x^{3}+24 x^{2}=0$
10. $12 x^{3}+12 x^{2}=24 x$
11. $100 x^{2}=9$
12. $x^{2}+15 x+36=0$
13. $5 x^{2}+21 x+4=0$
14. $8 x^{2}+80 x+200=0$
15. $6 x^{3}=24 x$
16. $2 x^{2}-27 x-45=$
17. $5 x^{2}+4=9 x$
18. $4 x^{2}+16 x+15=0$
