Factoring perfect square trinomials

Recall: we saw in section 5.3 that

$$(a + b)^2 = a^2 + 2ab + b^2$$

 $(a - b)^2 = a^2 - 2ab + b^2$

These polynomials are called *perfect squares* (because they equal $(a + b)^2$). If we are given a trinomial, such as $x^2 + 6x + 9$, how do we know if it is a perfect square? One only has to check that:

- Two of the terms are squares (say a^2 and b^2).
- The other term is plus or minus 2 times a times b.
- If it is a perfect square, then it factors as $(a + b)^2$ if the middle term has a positive sign and as $(a b)^2$ if the middle term has a negative sign.

Example: Factor $x^2 + 6x + 9$. We see that the first term (x^2) is a square, and the last term (9) is also a square (it is 3^2). On the other hand, the other term is $6x = 2 \cdot 3 \cdot x$. Therefore $x^2 + 6x + 9$ is a perfect square and $x^2 + 6x + 9 = (x + 3)^2$.

Note that these polynomials can also be factored using the methods of the previous chapter: we would only need to find two numbers m and n such that $m \cdot n = 9$ and m + n = 6. It is easy to see that 3 and 3 works, so $x^2 + 6x + 9 = (x + 3)(x + 3) = (x + 3)^2$.

Example: Factor $4x^2 - 12xy + 9y^2$. We see that the first term $(4x^2 = (2x)^2)$ is a square, and the last term $(9y^2 = (3y)^2)$ is also a square. On the other hand, the middle term is $12xy = 2 \cdot (2x) \cdot (3y)$. Therefore $4x^2 - 12xy + 9y^2$ is a perfect square. Since the middle term has a negative sign, we get $4x^2 - 12xy + 9y^2 = (2x - 3y)^2$.

<u>Practice exercises</u>: Factor the following trinomials.

1. $x^2 - 6x + 9 =$ 2. $x^2 + 12x + 36 =$ 3. $9x^2 + 6x + 1 =$ 4. $9x^2 - 12x + 4y^2 =$ 5. $9 + 30x + 25x^2 =$ 6. $64x^2 + 112xy + 49y^2 =$

Factoring binomials: differences of squares

So far we have learned to factor trinomials (using the methods of the previous sections) and polynomials with 4 terms (using factoring by grouping). What about binomials?

Besides common factors, a binomial can only be factored if it is a difference of squares. Recall:

$$(a+b)(a-b) = a^2 - b^2$$

Reading it backwards gives the key to factor differences of squares:

$$a^2 - b^2 = (a+b)(a-b).$$

Thus, if we see a polynomial that has the form $a^2 - b^2$, we can always factor it as (a + b)(a - b).

Example: Factor $x^2 - 9$. We see that the first term (x^2) is a square, and the last term (9) is also a square (it is 3^2). Since it is a difference of squares (it is $x^2 - 3^2$), it factors as (x + 3)(x - 3).

Example: Factor $x^4 - 4y^2$. We see that the first term $(x^4 = (x^2)^2)$ is a square, and the last term $(4y^2 = (2y)^2)$ is also a square. Since it is a difference of squares (it is $(x^2)^2 - (2y)^2$, it factors as $(x^2 + 2y)(x^2 - 2y)$.

Practice exercises: Factor the following binomials.

- 7. $x^2 9 =$ 8. $x^2 36 =$ 9. $9x^2 1 =$
- **10.** $9x^2 4y^2 =$ **11.** $9 25x^2 =$ **12.** $64x^2 49y^2 =$