6.3. Factor special products Professor Luis Fernández

Factoring perfect square trinomials

Recall: we saw in section 5.3 that

$$
\begin{aligned}
& (a+b)^{2}=a^{2}+2 a b+b^{2} \\
& (a-b)^{2}=a^{2}-2 a b+b^{2}
\end{aligned}
$$

These polynomials are called perfect squares (because they equal $\left.(a+b)^{2}\right)$. If we are given a trinomial, such as $x^{2}+6 x+9$, how do we know if it is a perfect square? One only has to check that:

- Two of the terms are squares (say a^{2} and b^{2}).
- The other term is plus or minus 2 times a times b.
- If it is a perfect square, then it factors as $(a+b)^{2}$ if the middle term has a positive sign and as $(a-b)^{2}$ if the middle term has a negative sign.
Example: Factor $x^{2}+6 x+9$. We see that the first term $\left(x^{2}\right)$ is a square, and the last term (9) is also a square (it is 3^{2}). On the other hand, the other term is $6 x=2 \cdot 3 \cdot x$. Therefore $x^{2}+6 x+9$ is a perfect square and $x^{2}+6 x+9=(x+3)^{2}$.
Note that these polynomials can also be factored using the methods of the previous chapter: we would only need to find two numbers m and n such that $m \cdot n=9$ and $m+n=6$. It is easy to see that 3 and 3 works, so $x^{2}+6 x+9=(x+3)(x+3)=(x+3)^{2}$.
Example: Factor $4 x^{2}-12 x y+9 y^{2}$. We see that the first term $\left(4 x^{2}=(2 x)^{2}\right)$ is a square, and the last term $\left(9 y^{2}=(3 y)^{2}\right)$ is also a square. On the other hand, the middle term is $12 x y=2 \cdot(2 x) \cdot(3 y)$. Therefore $4 x^{2}-12 x y+9 y^{2}$ is a perfect square. Since the middle term has a negative sign, we get $4 x^{2}-12 x y+9 y^{2}=(2 x-3 y)^{2}$.
Practice exercises: Factor the following trinomials.

1. $x^{2}-6 x+9=$
2. $x^{2}+12 x+36=$
3. $9 x^{2}+6 x+1=$
4. $9 x^{2}-12 x+4 y^{2}=$
5. $9+30 x+25 x^{2}=$
6. $64 x^{2}+112 x y+49 y^{2}=$

Factoring binomials: differences of squares

So far we have learned to factor trinomials (using the methods of the previous sections) and polynomials with 4 terms (using factoring by grouping). What about binomials?
Besides common factors, a binomial can only be factored if it is a difference of squares. Recall:

$$
(a+b)(a-b)=a^{2}-b^{2}
$$

Reading it backwards gives the key to factor differences of squares:

$$
a^{2}-b^{2}=(a+b)(a-b)
$$

Thus, if we see a polynomial that has the form $a^{2}-b^{2}$, we can always factor it as $(a+b)(a-b)$.
Example: Factor $x^{2}-9$. We see that the first term $\left(x^{2}\right)$ is a square, and the last term (9) is also a square (it is $\left.3^{2}\right)$. Since it is a difference of squares (it is $\left.x^{2}-3^{2}\right)$, it factors as $(x+3)(x-3)$.
Example: Factor $x^{4}-4 y^{2}$. We see that the first term $\left(x^{4}=\left(x^{2}\right)^{2}\right)$ is a square, and the last term $\left(4 y^{2}=(2 y)^{2}\right)$ is also a square. Since it is a difference of squares (it is $\left(x^{2}\right)^{2}-(2 y)^{2}$, it factors as $\left(x^{2}+2 y\right)\left(x^{2}-2 y\right)$.
Practice exercises: Factor the following binomials.
7. $x^{2}-9=$
8. $x^{2}-36=$
9. $9 x^{2}-1=$
10. $9 x^{2}-4 y^{2}=$
11. $9-25 x^{2}=$
12. $64 x^{2}-49 y^{2}=$

