6.2. Factor trinomials Professor Luis Fernández

Factoring trinomials of the form $x^{2}+b x+c$

Recall: when we multiply, for example, $(x+2)(x+3)$, we get

$$
(x+2)(x+3)=x^{2}+3 x+2 x+6=x^{2}+5 x+6 .
$$

Notice that the middle coefficient is $5=2+3$ and the constant term is $6=2 \cdot 3$. We can do this in general: when we multiply $(x+m)(x+n)$, where m and n are any numbers, we get

$$
(x+m)(x+n)=x^{2}+n x+m x+m n=x^{2}+(m+n) x+m n,
$$

that is, the middle term is the sum of m and n and the constant term is the product of m and n.
Now let us do this backwards. To factor a polynomial of the form $x^{2}+b x+c$ we want to find two numbers m and n such that

- $m+n=b$.
- $m \cdot n=c$.

Then we can immediately factor the polynomial: $x^{2}+b x+c=(x+m)(x+n)$.
Example: To factor $x^{2}+7 x+12$, we would want two numbers m and n that add to 7 and multiply to 12 . This is easy to find using trial and error: 3 and 4 will work. Thus we have

$$
x^{2}+7 x+12=(x+3)(x+4)
$$

It is important to check that this is correct: $(x+3)(x+4)=x^{2}+4 x+3 x+12=x^{2}+7 x+12$. It is correct.
Example: To factor $x^{2}-x-12$, we would want two numbers m and n that add to -1 and multiply to -12 . Because $m \cdot n=-12$, which is negative, it must be that one of the numbers is positive and the other is negative. Then we can try all the numbers that multiply to -12 , and we quickly find that the ones we want are -4 and 3 (because $-4+3=-1)$. Thus we have

$$
x^{2}-x-12=(x+3)(x-4)
$$

It is important to check that this is correct: $(x+3)(x-4)=x^{2}-4 x+3 x-12=x^{2}-x-12$. It is correct.
Sometimes it is not so straightforward to find the two numbers. In that case, the best solution is to try all the possibilities of numbers m and n such that $m \cdot n=c$. For example
Example: Factor $x^{2}+5 x-24$. We want m and n such that $m \cdot n=-24$ and $m+n=5$. Let us list in an organized way all the possible values of m and n such that $m \cdot n=-24$ until we find those such that $m+n=5$:

m	n	$m+n$
1	-24	-23
-1	24	23
2	-12	-11
-2	12	11
3	-8	-5
-3	8	5

We found them! $(-3) \cdot 8=-24$ and $(-3)+8=5$. Therefore

$$
x^{2}+5 x-24=(x+8)(x-3)
$$

Check: $(x+8)(x-3)=x^{2}-3 x+8 x-24=x^{2}+5 x-24$.

Practice exercises: Factor the following trinomials.

1. $x^{2}-6 x+8=$
2. $x^{2}+9 x+18=$
3. $x^{2}-5 x+6=$
4. $x^{2}-3 x-10=$
5. $x^{2}+4 x-12=$
6. $x^{2}-7 x-8=$
7. $x^{2}+9 x+14=$
8. $x^{2}+9 x+8=$
9. $x^{2}-x-6=$
10. $x^{2}+x-2=$
11. $x^{2}+10 x+16=$
12. $x^{2}+15 x+36=$

Factoring trinomials of the form $a x^{2}+b x+c$. The " $a c$ " method
What if the coefficient of x^{2} is not 1 as before? Then there is a method that combines the previous method with factoring by grouping. It works as follows:

- Find two numbers m and n such that $m+n=b$ and $m \cdot m=a \cdot c$.
- Since $b=m+n$, we can rewrite the polynomial as $a x^{2}+m x+n x+c$.
- Factor $a x^{2}+m x+n x+c$ by grouping.

Example: Factor $2 x^{2}+9 x+9$. Here we have $a=2, b=9, c=9$. Thus, $a \cdot c=18$. We want m and n such that $m \cdot n=18$ and $m+n=9$. A bit of trying gives that 3 and 6 works. Thus we can rewrite the polynomial as $2 x^{2}+3 x+6 x+9$. Now we factor by grouping:

$$
2 x^{2}+3 x+6 x+9=x(2 x+3)+3(2 x+3)=(x+3)(2 x+3)
$$

Let us check: $(x+3)(2 x+3)=2 x^{2}+3 x+6 x+9=2 x^{2}+9 x+9$.
Example: Factor $5 x^{2}-9 x-2$. Here we have $a=5, b=-9, c=-2$. Thus, $a \cdot c=-10$. We want m and n such that $m \cdot n=-10$ and $m+n=-9$. A bit of trying gives that -10 and 1 works. Thus we can rewrite the polynomial as $5 x^{2}-10 x+x-2$. Now we factor by grouping:

$$
5 x^{2}-10 x+x-2=5 x(x-2)+(x-2)=(5 x+1)(x-2)
$$

Let us check: $(5 x+1)(x-2)=5 x^{2}-10 x+x-2=5 x^{2}-9 x-2$.
Practice exercises: Factor the following trinomials.
13. $5 x^{2}+21 x+4=$
14. $8 x^{2}+25 x+3=$
15. $6 x^{2}+x-15=$
16. $2 x^{2}-27 x-45=$
17. $5 x^{2}-9 x+4=$
18. $4 x^{2}+16 x+15=$

