5.1. Add and subtract polynomials Professor Luis Fernández

Some definitions

- Terms: In a mathematical expression, the terms are the parts of the expression separated by a + or $a-$. For example, in the expression $2 x-3 y^{4}+6 x-4$ there are 4 terms:

$$
2 x-3 y^{4}+6 x-4 \text {. }
$$

NOTICE that each term is taken with its sign. That is, the second term in the last expression is $-3 y^{4}$.
Each term can have any form, the point is that it is separated by the rest by + or - . For example, the terms in the expression $3(x+2)+3 y+\frac{3 x+1}{4}$ are

$$
3(x+2)+3 y+\frac{3 x+1}{4}
$$

even though some of the terms themselves have + or - inside.
Exercises: Circle the terms in each of the following expressions.

1. $3 x+5 y-6$
2. $x^{2}-5 x+6$
3. $\frac{3 x-2}{5}+3 x-1$
4. $3(x+2 y-1)$.

- Polynomials: A polynomial is a mathematical expression that can be written so that each term is either a number or a number multiplying variables with or without exponents. For example, $3 x^{3}-5 x^{2}+x-4,3 x y^{3}-$ $2 x z-x^{2} \cdot 4+6, \frac{1}{3} x^{2} y^{3}+3 x, 6$, and 0 , are all polynomials, whereas $\frac{3}{x^{2}+1}-4$ is not a polynomial.
Exercises: Determine if the following are polynomials.

5. $3 x+5 y-6$
6. $x^{2}-5 x+6$
7. $\frac{3 x-2}{5}+3 x-1$
8. $\frac{3+x}{2+x}+3 x-5$.

- Monomial A polynomial with only one term, like $2 x y$, or $-3 x^{2} y^{5}$, or -4 .
- Binomial A polynomial with two terms, like $x^{2}-1$, or $-3 x^{2}+x y z^{2}$, or $-4+5 y$.
- Trinomial A polynomial with three terms, like $x^{2}+3 x+2$, or $-3 x y^{5}+1-7 y$, or $-4+3 x+5 y$.

Exercises: Classify the following in monomials, binomials, trinomials or neither.
9. $3 x+5 y-6$
10. $x^{2}-5 x+6$
11. $5 x+3$
12. $-3 x^{3} y^{2} z^{3}$.
13. $3 x+5 y$
14. x^{2}
15. $5 x+3+7 y-5 x y$
16. $x^{3}+3 x-1$.

- Coefficients: In a term, the coefficient is the number that multiplies the variable(s), if any. For example, the coefficient of $-3 x y^{2}$ is (-3), the coefficient of 5 is 5 , and the coefficient of $\frac{-3}{5} x$ is $-\frac{3}{5}$.
Exercises: Circle each term and find the coefficient in each term of the following polynomial.

17. $4 x y-5 x^{4} y^{3}-8+2 x^{3}+x^{12} \cdot 5-x^{2} \cdot 4+x^{34}$

- Degree of a term: In a polynomial with only one variable, the degree is the exponent of the variable. Note that if there is no exponent written, then the exponent is 1 , and if there is no variable, the exponent is 0 . For example, the degree of $5 x^{3}$ is 3 , the degree of $-3 x$ is 1 , and the degree of 9 is 0 .

Exercises: Find the coefficient and the degree for each term of the following polynomial.
18. $3 x^{7}+5 x^{4}-6+4 x^{3}+6 x^{12}-5 x^{2}+x^{34}$

In order to work with polynomials more efficiently it is common to write the polynomial with the degrees in descending order. For example, we could write $4+5 x-3 x^{4}+x^{2}$, but it is easier to read if we write $-3 x^{4}+x^{2}+$ $5 x+4$.

Exercises: Rewrite the following polynomials in descending order of degrees.
19. $x+x^{3}-6-5 x^{2}$
20. $-4 x+x^{2}+6$
21. $-3 x+4 x^{7}-5 x^{2}+6-17 x^{3}+12 x^{8}$.

- Degree of a polynomial: The maximum degree of all the terms. For example, the degree of $x+5 x^{3}-2$ is 3 , the degree of $x+5$ is 1 , and the degree of 5 is 0 .
- Leading term: The leading term is the term with highest degree. For example the leading term of $x+5 x^{3}-2$ is $5 x^{3}$, the leading term of $x+5$ is s, and the leading term of 5 is 5 .
- Constant term: The term in a polynomial that has degree 0 (that is, it contains no variables). If no terms have degree 0 we say that the constant term is 0 . For example, the constant term of $x+5 x^{3}-2$ is -2 , the constant term of $x+5$ is 5 , and the constant term of $x^{3}+4 x$ is 0 .

Exercises: Find the degree, the leading term, and the constant term of the following polynomials.
22. $x+x^{3}-6-5 x^{2}$
23. $-4 x+x^{2}+6$
24. $-3 x+4 x^{7}-5 x^{2}+6-17 x^{3}+12 x^{8}$.

- Like terms: Two or more terms are like terms if they have the same variables with the same exponents (although the coefficient may be different). For example, $-5 x^{2}$ and $3 x^{2}$ are like terms, $3 x^{2} y$ and $5 y x^{2}$ are also like terms, whereas $3 x$ and $2 x^{2}$ are not like terms.

Adding polynomials: combining like terms

Like terms in a polynomial can be combined in a single term. For example, if we have $4 x+6 x$ we can put the two terms together to get $10 x$. Essentially, think that we have 4 copies of x together with 6 copies of x; so in total we have 10 copies of x.

To add polynomials you only have to combine like terms: first find which terms are like terms and then combine them. For example, in

$$
\left(3 x^{2}+4 x-5\right)+\left(x-5 x^{3}-6+4 x^{2}\right)
$$

$3 x^{2}$ and $4 x^{2}$ are like terms, $4 x$ and x are like terms, and -5 and -6 are like terms, so we can combine them. It is easier to see if we remove the parenthesis and reorganize the polynomial in descending order:

$$
\left(3 x^{2}+4 x-5\right)+\left(x-5 x^{3}-6+4 x^{2}\right)=-5 x^{3}+3 x^{2}+4 x^{2}+4 x+x-5-6=-5 x^{3}+7 x^{2}+5 x-11
$$

Practice exercises: Add the following polynomials and write the answer in descending order of degree.
25. $\left(x^{2}+3 x-2\right)+\left(3 x^{2}-5 x-6\right)$
26. $\left(3 x^{3}-4 x-2 x^{2}\right)+\left(3 x^{2}-6+x\right)$
27. $\left(5 x^{3}-2 x-1\right)+\left(3 x^{5}-5^{2}\right)$
28. $\left(4 x^{2} y+3 x y-2\right)+\left(3 x y-5 x y^{2}+6\right)$
29. $\left(3 x-4 x y-z+x^{2}\right)+\left(-5 x^{2}+z-3 x\right)$
30. $\left(x^{2}+3 x-2\right)+\left(-3 x^{2}-3 x+2\right)$

Subtracting polynomials

To subtract polynomials the only thing that has to be remembered is to start by distributing the "-" sign. Whenever there is a "-" in front of a parenthesis, it distributes to all the terms inside the parenthesis, that is

$$
-(a+b)=-a-b
$$

For example, $-\left(x^{2}+3 x-5\right)=-x^{2}-3 x+5$. For example, $-\left(-x^{3}-2 x^{2}-5 x+6\right)=x^{3}+2 x^{2}+5 x-6$.
Once the "-" is distributed, just combine like terms as before.
Example: Simplify $\left(3 x^{2}+3 x-5\right)-\left(3 x^{2}-5 x-7\right)$. Start by distributing the - , and remove the parenthesis. Then combine like terms:

$$
\left(3 x^{2}+3 x-5\right)-\left(3 x^{2}-5 x-7\right)=3 x^{2}+3 x-5-3 x^{2}+5 x+7=8 x+2
$$

Practice exercises: Add the following polynomials and write the answer in descending order of degree.
31. $\left(x^{2}+3 x-2\right)-\left(3 x^{2}-5 x-6\right)$
32. $\left(3 x^{3}-4 x-2 x^{2}\right)-\left(3 x^{2}-6+x\right)$
33. $\left(5 x^{3}-2 x-1\right)-\left(3 x^{5}-5^{2}\right)$
34. $\left(4 x^{2} y+3 x y-2\right)-\left(3 x y-5 x y^{2}+6\right)$
35. $\left(3 x-4 x y-z+x^{2}\right)-\left(-5 x^{2}+z-3 x\right)$
36. $x^{2}+3 x-2-\left(-3 x^{2}-3 x+2\right)$
37. $4-\left(-9 x^{2}-x+3\right)$
38. $\left(x^{4}+x^{2}-x\right)-\left(-5 x^{2}-3\right)$
39. $2 x^{4}-4 x y^{2}-z^{2}-\left(-5 x^{2}+z^{2}-3 y^{2} x\right)$
40. $-2-\left(-8 x^{2}+5 x-2\right)$

