2.3. Solving a formula for a specific variable. Professor Luis Fernández

Formulas as equations with more than one variable

Recall: Some equations contain more than one variable. These equations are often called "formulas" because they give some interesting quantity in terms of others. For example, the formula

$$
A=\frac{b \cdot h}{2}
$$

gives the area A of a triangle with height h and base of length b. Or the formula

$$
F=32+\frac{9}{5} C
$$

gives the formula to convert from C degrees Celsius to degrees Fahrenheit (F).
Example: To find the area of a triangle with base of length 4 in and height 6 in , one just has to substitute $b=4$ and $h=6$ in the formula above:

$$
A=\frac{4 \cdot 6}{2}=12 \mathrm{sq} \mathrm{in} .
$$

However, sometimes we would want to find a formula for a different variable. For example, we would want a formula that gives the height of a triangle given its area and its base. To find such a formula, we will need to solve for one of the variables in terms of the others.
The procedure is the same as when the equations have only one variable: just treat the variables as if they were numbers and do the same steps.
Example: Solve for h in the formula for the area of a triangle above.
Start with $A=\frac{b \cdot h}{2}$. Multiply both sides by 2 to get $2 A=b \cdot h$, and finally divide both sides by b to get $\frac{2 A}{b}=h$.
Practice exercises: Solve the following equations for the indicated variable.

1. Solve for T in the formula $P V=n R T$
2. Solve for y in the formula $2 x+y=7$
3. Solve for C in the formula $F=32+\frac{9}{5} C$
4. Solve for x in the formula $-5 x+2 y=4$
5. Solve for b in the formula $a^{2}+b^{2}=h^{2}$
6. Solve for r in the formula $A=2 \pi r$
7. Solve for B in the formula $A=\frac{h(B+b)}{2}$
8. Solve for y in the formula $3 x-6 y=3$

There is only point in which one has to think a bit more: sometimes the variable we are solving for appears in more than one term. For example, if we want to solve for the variable q in the formula

$$
G=p q+r q+3
$$

we need to combine the terms $p q$ and $r q$. This is done exactly as with numbers.
For example, to combine $5 q+4 q$ we add the 4 and the 5 and we get $9 q$. Likewise, to combine $p q+r q$ we add p and r to get $(p+r) \cdot q$.
Example: Solve for A in the formula $K=A C+B C+A B$.
We first move the term without A to the right (that is, subtract $B C$ from both sides) to get $K-B C=A C+A B$. Then combine $A C$ and $A B$ to get $K-B C=A(C+B)$.
Finally divide both sides by $(C+B)$ to get $A=\frac{K-B C}{C+B}$.
Practice exercises: Solve the following equations for the indicated variable.
9. Solve for T in the formula $V=3 T+5-R T$
10. Solve for y in the formula $2 y+x y-4=6$
11. Solve for a in the formula $3=a x+a x^{2}+2$
12. Solve for b in the formula $a x+2 y=3 a$

