MTH~28,~Midterm~1,~V.~3,~04/10/25~ Prof. Luis Fernández

NAME:

There are 18 questions. Some are multiple choice and some are free response.

Each question is worth 6 points over 100 for a total of 108 (so 8 points are extra credit). For multiple-choice questions, just circle your answer.

For free-response questions, SHOW ALL WORK to receive credit.

1. Factor:

$$8x^2 - 2x - 1$$

2. Factor the difference of squares:

$$4x^2 - 9$$

3. Factor completely: $45x^2y - 20y^3$

Circle the answer.

(a)
$$5(9x^2y - 4y^3)$$

(b)
$$5y(9x^2 - 1024y^2)$$

(c)
$$5y(3x-2y)(3x+2y)$$

(d)
$$5y(3x-2y)^2$$

4. Factor:

$$x^2 - x - 6$$

5. Factor:

$$x^2 + 8x + 15$$

6. Factor out the greatest common factor (GCF). $6x^4 - 9x^3$

7. Factor by grouping:

$$y^2 - 7y + 4y - 28$$

8. Factor out the greatest common factor (GCF). $25x^2y^4 + 10xy - 15x$

9. Factor completely: $30x^2y + 5xy - 60y$ Circle the answer.

(a)
$$5y(3x-4)(2x+3)$$

(b)
$$xy(15x + 65)$$

(c)
$$5y(6x^2 + x - 12)$$

(d)
$$y(30x^2 + 5x - 60)$$

11. Given the function $f(x) = 3x^2 + 5x - 2$, calculate the following values:

•
$$f(0) = \underline{\hspace{1cm}}$$

•
$$f(2) =$$

•
$$f(-2) =$$

•
$$f(x+1) =$$

•
$$f(-x) =$$

- **10.** For the polynomial $x^2 + x^5 3x 5$,
 - a) Determine the coefficient and the degree of each term.

Term	Coefficient	Degree
x^2		
x^5		
-3x		
-5		

b)
The degree of the polynomial is ______,

The leading term is _____,

The leading coefficient is _____.

12. Solve the equation

$$7z - z^2 = 0.$$

13. Solve the equation: $6x^2 + 3 = 11x$.

14. Find all real number solutions for the equation

$$x(x - 18) = -72.$$

15. Let
$$f(x) = \frac{x+7}{3x-3}$$
.

Compute the following values. If one is not defined, type *Undefined*.

- $f(0) = \underline{\hspace{1cm}}$
- f(2) =_____
- f(1) =_____

16. Solve the equation

$$3w^3 - 27w^2 + 54w = 0.$$

- 17. Evaluate the function g(x) = -4 at the given values:
- 18. Solve the equation $n^2 + 8n + 7 = 0.$

- g(0) =_____
- g(2) =_____
- g(-5) =_____
- $\bullet \ g(x+1) = \underline{\hspace{1cm}}$