MATH 13, Sec. D02 - College Algebra and Trigonometry, V. I

Review sheet. Professor Luis Fernández

- 1. A vector \vec{V} has magnitude $|\vec{V}| = 23.5$ and direction $\theta = 108^{\circ}$. Find the *x* and *y*-components. Round off to the nearest tenth.
- 2. A vector \vec{A} has magnitude $|\vec{A}| = 12.3$ ft and direction $\theta = 27^{\circ}$. Find the x- and y-components. Round off to the nearest tenth.
- **3.** A vector \vec{R} has components $R_x = -13$ and $R_y = 5$. Find the magnitude and the angle of \vec{R} .
- 4. Find $\vec{A} + \vec{B}$, where $|\vec{A}| = 1653$, $\theta_A = 36^\circ$, $|\vec{B}| = 9807$, $\theta_B = 253^\circ$.
- 5. Find $\vec{A} + \vec{B}$, where $|\vec{A}| = 16$, $\theta_A = 30^\circ$, $|\vec{B}| = 12$, $\theta_B = 65^\circ$.
- 6. A jet flew 120 miles due West from Boston, and then 80 miles due North. What is the displacement of the jet from Boston?
- 7. Simplify the following expression, writing the result in the form a + bj.

$$\frac{(6j+5)(2-4j)}{(5-j)(4j+1)}.$$

- 8. Write
 - a) -22 77j in polar form and exponential form.
 - b) $20\angle 120^{\circ}$ in rectangular form and exponential form.
 - c) $2e^{0.25j}$ in rectangular form and polar form.
- **9.** Evaluate and express the answers in the form a + jb.
 - a) $\frac{2}{j} + \frac{3+4y}{1-j}$
 - **b)** $(2+4j) (-j+3) + (-2j^3).$
- 10. Evaluate $(5\angle 35^\circ) \cdot (8\angle 18^\circ) \div (2\angle 100^\circ)$. Express your answer in polar form.
- 11. Multiply and write the answer in polar form: (2-j)(1+3j).
- 12. Multiply and write the answer in polar form:

 $2(\cos 135^{\circ} + j\sin 135^{\circ}) \cdot 3(\cos 60^{\circ} + j\sin 60^{\circ}).$

13. Find $(1+2j)^5$. Express the answer in polar form.

f.

14. Write $\sqrt{3} - 2j$ in exponential form.

15. Let
$$f(x) = \frac{x}{\sqrt{x-1}}$$
.
a) Find $f(x+1)$.
b) Find the domain of

16. Find the domain of $g(x) = \sqrt{x-6}$.

17. Given f(x) = x² + 3x, find
a) f(c-1).
b) f(-2c).

18. Given the function $f(x) = \frac{9-x^2}{3x}$, find a) f(-2) and f(x+1). b) The domain of f.

- **19.** Sketch the graph of $y = 2^x 4$, showing the coordinates of at least 4 points.
- **20.** Sketch the graph of $y = 2 + \log_2 x$, showing the coordinates of at least 4 points.
- **21.** Solve for x.
 - a) $\operatorname{Ln}(x-8) + \operatorname{Ln} x = 2 \operatorname{Ln} 3.$ b) $3^{2x-1} = 27.$
- **22.** Solve for y: $\operatorname{Ln} y + 2 \operatorname{Ln} 3 = \operatorname{Ln} 2 + \operatorname{Ln} 5$.
- **23.** Write $\log_2 x + 2 \log_2 3 = 3 \log_2 81$
- **24.** Condense (i.e. write with a single logarithm): $\log_2 5 + 2 \log_2 x 3 \log_2 y$.
- 25. Convert:
 - a) 72° to radians.
 - b) 315° to radians.
 - c) $\frac{5\pi}{3}$ to degrees.
 - d) $\frac{3\pi}{5}$ to degrees.
- 26. For the function $y = -3\sin\left(2x \frac{\pi}{2}\right)$, find the amplitude, period and displacement, and sketch one period of its graph. Make sure to mark the important points in the x- and y-axes.
- 27. Find amplitude, period, and displacement, and sketch one cycle of the graph of $y = -2\sin(\pi x + \pi)$. Make sure to label the important points in the x- and y-axes.
- **28.** Find amplitude, period, and displacement, and sketch one cycle of the graph of $y = 2\sin(3x + \pi)$. Make sure to label the important points in the x- and y-axes.
- **29.** Prove the identity $\sin x (\tan x + \cot x) = \sec x$.
- **30.** Prove the identity $2 \tan x \cos^2 x = \sin 2x$
- **31.** Prove the identity $\sin \theta + \cot \theta \cos \theta = \csc \theta$.
- **32.** Prove the identity $\sec x(1 \sin^2 x) = \cos x$.
- **33.** Prove the identity $\tan x + \cot x = \sec x \csc x$.
- **34.** Solve the equation $3\cos^2 x + \cos x = 0$, for $0^\circ \le x < 360^\circ$ (in degrees!).
- **35.** Solve the equation $2\cos x 1 = 0$, for $0^{\circ} \le x < 360^{\circ}$ (in degrees!).
- **36.** Solve the equation $\sin x + 1 = 3 \sin x$, for $0^\circ \le x < 2\pi$ (in radians!).

- **37.** Find the exact value of $\sin(105^\circ)$ using $105^\circ = 60^\circ + 45^\circ$.
- **38.** Find the exact value of $\sin 120^\circ$ by using $120^\circ = 90^\circ + 30^\circ$.
- **39.** Solve the following system of equations using determinants.

$$\begin{cases} 2x - 6y = -3\\ -6x - 18y = 5 \end{cases}$$

40. Solve the following system of equations using determinants.

$$\begin{cases} x - 3y = -7\\ -2x + 3y = 5 \end{cases}$$

41. Solve the following system of equations using determinants.

$$\begin{cases} 4x + y = 0\\ -2x + 2y = 10 \end{cases}$$