MTH 06, Test 1, V. 2, 09/20/21 Prof. Luis Fernández

SOLUTION NAME:

There are 22 questions. Some are multiple choice and some are free response.

Each question is worth 5 points over 100 (so 10 points are extra credit).

For multiple-choice questions, just circle your answer.

For free-response questions, SHOW ALL WORK to receive credit.

1. Simplify: $\frac{1}{8} + \frac{1}{12} - \frac{1}{16} =$

Solution: The common denominator

 $\frac{1}{8} + \frac{1}{12} - \frac{1}{16} = \frac{6}{48} + \frac{4}{48} - \frac{3}{48} =$

- 3. Use the formula $F = \frac{9}{5}C + 32$ for converting degrees Celsius into degrees Fahrenheit to find the Fahrenheit measure of the Celsius temperature C = 25. Circle the answer.
- (a) 37
- (b) 257
- (c) 77
 - (d) 51.4

Solution: When C = 25, $F = \frac{9}{5} \cdot 25 + 32 = 9 \cdot 5 + 32 = 45 + 32 = \boxed{77}$ **2.** Evaluate the expressions for x = 6, y = 9, and

Solution:

 $x + 6 = 6 + 6 = \boxed{12}$

 $2z - 6 = 2 \cdot 5 - 6 = 10 - 6 = 4$ $xyz = 6 \cdot 9 \cdot 5 = 270$ y + z = 9 + 5 = 14

Solution: $\frac{4}{5} \cdot \frac{7}{16} = \frac{1}{5} \cdot \frac{7}{4} =$

5. Simplify:
$$4 \cdot \frac{5}{8} =$$

Solution:
$$4 \cdot \frac{5}{8} = \frac{20}{8} = \boxed{\frac{5}{2}}$$

7. Evaluate: 13 - 3(8 - 4) =

Solution:
$$13 - 3(8 - 4) = 13 - 3 \cdot (4) = 13 - 12 = 1$$
.

6. Evaluate the expression:

$$9 + 3 \cdot 7 - (8 + 3 \cdot 6) =$$

Solution:

$$9 + 3 \cdot 7 - (8 + 3 \cdot 6) = 9 + 21 - (8 + 18) = 30 - 26 = \boxed{4}$$

8. Solve: 3(7x+1) = 4(5x+1) + 14. Circle the answer.

(a)
$$-13$$

(b)
$$\frac{21}{41}$$

(c)
$$\frac{9}{20}$$

(d) 15

Solution:

$$3(7x+1) = 4(5x+1) + 14$$

$$21x+3 = 20x+4+14 \text{ (distribute)}$$

$$21x+3 = 20x+18 \text{ (combine like terms)}$$

$$21x = 20x+15 \text{ (-3 from both sides)}$$

$$x = \boxed{15} \text{ (-20x from both sides)}$$

9. Solve the equation 8x - 7 = 2x - 3.

Solution:

$$8x - 7 = 2x - 3$$

$$8x - 7 = 2x - 3 \text{ (+7 to both sides)}$$

$$6x = 4 \text{ (-2}x \text{ from both sides)}$$

$$x = \frac{4}{6} \text{ (\div6 on both sides)}$$

$$x = \begin{bmatrix} \frac{2}{3} \end{bmatrix}$$
 (Simplify.)

10. Solve the inequality and express the answer as an interval.

$$x - \frac{4}{5} > \frac{6}{5}x - 2.$$

Solution:

$$x - \frac{4}{5} > \frac{6}{5}x - 2$$

$$x - \frac{4}{5} > \frac{6}{5}x - 2$$

$$\frac{5x}{5} - \frac{4}{5} > \frac{6}{5}x - \frac{10}{5} \text{ (common denominators)}$$

$$5x - 4 > 6x - 10 \text{ (remove denominators)}$$

$$5x > 6x - 6 \text{ (+4 both sides)}$$

$$-x > -6 \text{ (-6 both sides)}$$

$$x < 6 \text{ (÷(-1) and swap inequality)}$$

$$5x-4 > 6x-10$$
 (remove denominators

$$5x > 6x - 6$$
 (+4 both sides)

$$-x > -6 \ (-6 \text{ both sides})$$

$$x < 6 \ (\div(-1) \text{ and swap inequality})$$

The solution is therefore $(-\infty, 6)$

11. Solve the inequality and express the answer on the number line provided

$$6x - 14 + 2(x - 5) < 0.$$

Solution:

$$6x - 14 + 2(x - 5) < 0$$

$$6x - 14 + 2(x - 5) < 0$$

 $6x - 14 + 2x - 10 < 0$ (distribute)

$$8x - 24 < 0$$
 (combine like terms)

$$8x < 24$$
 (+24 to both sides)

$$x < 3 \ (\div 3 \text{ on both sides})$$

The solution is therefore

12. Express each graph below as an inequality using the variable x. Enter your answers as "x > number", or "x < number", or " $x \ge$ number", or " $x \leq$ number", as appropriate.

Inequality: x < 4

Inequality: x > -3

Inequality: $x \ge 0$

Inequality: $x \le -2$

13. Circle the graph of the solution to the inequality:

$$-1 - (-2 + x) \le 3x + 21$$

Solution:

$$-1 - (-2 + x) \leq 3x + 21$$

$$-1 + 2 - x \leq 3x + 21 \text{ (distribute)}$$

$$1 - x \leq 3x + 21 \text{ (combine like terms)}$$

$$-x \leq 3x + 20 \text{ (-1 from both sides)}$$

$$-4x \leq 20 \text{ (-3}x \text{ from both sides)}$$

$$x \geq -5 \text{ (\div(-4) and swap inequality)}$$

15. The volume of a pyramid is given by the equation

$$V = \frac{1}{3}Bh.$$

Solve for B.

Solution:

$$V = \frac{1}{3}Bh$$

$$3V = Bh \ (\cdot 3 \text{ both sides})$$

$$\frac{3V}{h} = B \ (\div h \text{ both sides})$$

Solution:
$$B = \frac{3V}{h}$$

14. Solve for x.

$$\frac{10}{3}x + \frac{1}{6} = \frac{7}{3}x + \frac{37}{6}$$

Solution:

$$\frac{10}{3}x + \frac{1}{6} = \frac{7}{3}x + \frac{37}{6}$$

$$\frac{20}{6}x + \frac{1}{6} = \frac{14}{6}x + \frac{37}{6} \text{ (common denominator)}$$

$$20x + 1 = 14x + 37 \text{ (remove denominators)}$$

$$20x = 14x + 36 \text{ (-1 both sides)}$$

$$6x = 36 \text{ (-14x both sides)}$$

$$x = 6 \ (\div 6x \text{ both sides})$$

Solution: x = 6

16. Solve for *y*:

$$z = 4x + 9y.$$

(a)
$$y = \frac{z + 4x}{9}$$

(b)
$$y = 9(z - 4x)$$

(c)
$$y = \frac{z}{9} - 4x$$

$$(d) y = \frac{z - 4x}{9}$$

Solution:

$$z = 4x + 9y$$

$$z - 4x = 9y \quad (-4x \text{ both sides})$$

$$\frac{z - 4x}{9} = y \quad (\div 9 \text{ both sides})$$

17. Solve for s when tw = 6s - a.

Circle the answer.

(a)
$$s = -\frac{tw}{a}$$

(b)
$$s = tw - a$$

(c)
$$s = tw - a$$

$$\overbrace{\text{(d)}} s = \frac{tw + a}{6}$$

Solution:

$$tw = 6s - a$$

$$tw + a = 6s (+a \text{ to both sides})$$

$$\frac{tw + a}{6} = s (\div 6 \text{ both sides})$$

Solution:
$$s = \frac{tw + a}{6}$$

18. Find

$$38 - (-30) + (-15) - 63.$$

Solution:

$$38 - (-30) + (-15) - 63$$

$$= 38 + 30 + (-15) - 63$$

$$= 68 + (-15) - 63$$

$$= 53 - 63$$

$$= -10$$

19. Solve the equation 8x + 10 = -7.

Solution:

If
$$8x + 10 = -7$$
,
then $8x = -17$,

which implies x = -

20. Divide or state that the division is undefined: (Note: Your answer must be a fraction.)

$$-\frac{3}{2} \div \left(-\frac{9}{4}\right) = \boxed{\frac{2}{3}}$$

$$15 \div \left(-\frac{3}{2}\right) = \boxed{-10}$$

Solution:

(a)
$$-\frac{3}{2} \div \left(-\frac{9}{4}\right) = \frac{3}{2} \cdot \frac{4}{9} = \boxed{-\frac{2}{3}}$$

(b) $15 \div \left(-\frac{3}{2}\right) = -15 \cdot \frac{2}{3} = \boxed{-10}$

(b)
$$15 \div \left(-\frac{3}{2}\right) = -15 \cdot \frac{2}{3} = \boxed{-10}$$

- **21.** Solve for C in the formula $F = \frac{9}{5}C + 32$.
- **22.** Solve the equation |x-2|=3.

Solution:

$$F = \frac{9}{5}C + 32$$

$$F - 32 = \frac{9}{5}C \quad (-32 \text{ on both sides})$$

$$5(F - 32) = 9C \quad (\cdot 5 \text{ on both sides})$$

$$\frac{5}{9}(F - 32) = C \quad (\div 9 \text{ on both sides})$$

Therefore, the solutions is $C = \frac{5}{9}(F - 32)$

Solution: If |x-2|=3, then either x-2=3, so x=5, or x-2=-3, so x=-1. Therefore there are two solutions: x=5 and x=-1.