1. Simplify the following rational expressions.

(a)
$$\frac{y+3}{\frac{y}{y-2}}$$

(b) $\frac{2+\frac{1}{x}}{1-\frac{2}{x}}$
(c) $\frac{\frac{2}{x}+\frac{1}{x-1}}{\frac{2}{x-1}+\frac{1}{x+1}}$
(c) $\frac{\frac{2}{x}+\frac{1}{x-1}}{\frac{2}{x-1}+\frac{1}{x+1}}$
(c) $\frac{\frac{2}{x}+\frac{1}{x-1}}{\frac{2}{x-1}+\frac{1}{x+1}}$
(c) $\frac{\frac{2}{x}+\frac{1}{x-1}}{\frac{2}{x-1}+\frac{1}{x+1}}$

- 2. Solve the following equations.
 - (a) $\frac{x}{3} + \frac{3}{2} = \frac{x}{6} + \frac{2x}{3}$ (b) $\frac{5}{x-3} = \frac{4}{x-2}$ (c) $2 + \frac{5}{x} = \frac{2}{x+9}$ (d) $\frac{1}{x-4} + \frac{1}{x+4} = \frac{12}{x^2-16}$ (e) $\frac{5}{x-2} + \frac{6}{x+2} = 2$ (f) $\frac{x}{x-4} = \frac{5x}{x^2-x-12} - \frac{3}{x+3}$ (g) $\frac{2}{x^2-4} - \frac{1}{x^2+x-2} = \frac{3}{x-3x+2}$
- 3. Do a table of values and graph the following equations.

(a)
$$y = 3 \cdot 2^x$$
.
(b) $y = \left(\frac{1}{3}\right)^x$.

- 4. Find the exact value of the following expressions.
 - (a) $\log_3 81.$ (b) $\log_2 32.$ (c) $\log_8 2.$ (d) $\log_{16} 8.$ (f) $\log_9 \frac{1}{27}.$ (g) $\log_{10} \frac{1}{10,000}.$ (h) $\log_{81} \frac{1}{27}.$
 - (e) $\log_3 \frac{1}{27}$.

5. Solve the following equations.

(a)
$$5^{x} = 125.$$
 (d) $2^{2x-3} = 16.$
(b) $2^{x} = \frac{1}{16}.$ (e) $3^{3x-1} = \frac{1}{27}.$
(c) $4^{x-1} = 16.$

- 6. Solve the following equations.
 - (a) $\log_5 x = 3.$ (b) $\log_b \frac{27}{8} = 3.$ (c) $x = \log_5 125.$ (d) $\log_8 x = \frac{1}{2}.$ (e) $\log_b \frac{1}{8} = -\frac{3}{4}.$ (f) $\log_{5/7} x = 2.$ (g) $\log_{2/3} x = -3.$
- 7. For a triangle as in the figure below, find the exact value of $\sin \alpha$, $\cos \alpha$, $\tan \alpha$, $\cot \alpha$, $\sec \alpha$, and $\csc \alpha$ given that
 - (a) a = 3, b = 4, c = 5.
 (b) a = 10, b = 24, c = 26.
 (c) a = 5, b = 7, c = √74.
 (d) a = 2, b = 5 (you need to find c also).

В

For the next 4 exercises you will need a calculator. Round your answers to the nearest hundredth.

8. Solve each right triangle using the given information. Lengths refer to a triangle labeled as the one below. In each case $\angle C = 90^{\circ}$.

- 9. The angle of elevation of the top of a tower is 40° from an observation point 90 ft. from the base of the tower. Find the height of the tower.
- 10. Measured from a boat in a lake, the angle of elevation of the top of a tree is 40° when the boat is 80 ft from the base of the tree. Find the height of the tree.
- 11. A 50 ft pole casts a shadow 20 ft long. Find the angle of elevation of the sun.

- 12. Find the exact value of $\sin \alpha$, $\cos \alpha$, $\tan \alpha$, $\cot \alpha$, $\sec \alpha$, and $\csc \alpha$ given that:
 - (a) $\cos \alpha = \frac{3}{5}$ and α is in the first quadrant.
 - (b) $\cos \alpha = -\frac{2}{3}$ and α is in the second quadrant.
 - (c) $\sin \alpha = \frac{4}{7}$ and α is in the second quadrant.
 - (d) $\sin \alpha = -\frac{5}{8}$ and α is in the fourth quadrant.
 - (e) $\tan \alpha = \frac{4}{3}$ and α is in the third quadrant.
- 13. Find all the angles α between 0 and 360° that satisfy
 - (a) sin α = ¹/₂ (write exact values of α).
 (b) cos α = -^{√2}/₂ (write exact values of α).
 - (c) $\sin \alpha = 0.34$ (use a calculator here to find one of the values; find the other using a picture).
 - (d) $\cos \alpha = -0.28$ (use a calculator here to find one of the values; find the other using a picture).

14. Fill in the remaining angles inside the boxes. Then fill in the remaining coordinates of the points marked in the circle. [Recall that the *x*-coordinate of the point is the cosine of the corresponding angle, and the *y*-coordinate is the sine.]

