MTH 05, Test 3, V. 3, 11/20/18 Luis Fernández

NAME:

SOLUTION

There are nineteen questions. Multiple choice questions are 5 points each. Free response questions are 7 points each. For multiple-choice questions, circle your answer. For free-response questions, SHOW ALL WORK to receive full credit.

1. Write using only positive exponents: $(-x^3y^{-6}z^5)(8x^{-3}yz^4)$

(a)
$$\frac{z^9}{8y^5}$$

(b) $-\frac{8z^{20}}{x^9y^6}$
(c) $-\frac{8z^9}{y^5}$
(d) $\frac{24x^6z^9}{y^5}$

Solution: $(-x^{3}y^{-6}z^{5})(8x^{-3}yz^{4})$ $= -8x^{3+(-3)}y^{-6+1}z^{4+5}$ $= -8y^{-5}z^{9}$ $= -\frac{8z^{9}}{y^{5}}$

3. Divide and write in scientific notation: $\frac{3.5 \times 10^7}{5 \times 10^{-5}}$

(a)
$$7 \times 10^{11}$$

(b) 7×10^{10}

- (c) 0.7×10^{12}
- (d) 7×10^{12}

Solution:

 $\frac{3.5 \times 10^7}{5 \times 10^{-5}} = \frac{3.5}{5} \cdot \frac{10^7}{10^{-5}} = 0.7 \times 10^{12} = 7 \times 10^{11}$

2. Multiply: $(3x - 2)(x^2 + 4x - 5)$ (a) $3x^3 - 14x^2 - 23x + 10$ (b) $3x^3 + 10x^2 - 23x + 10$ (c) $12x^6 - 12x^4 + 10$ (d) $3x^3 + 10x^2 + 7x + 10$

Solution:

$$(3x - 2)(x^{2} + 4x - 5)$$

= $3x^{3} + 12x^{2} - 15x - 2x^{2} - 8x + 10$
= $3x^{3} + 10x^{2} - 23x + 10$

- 4. Which of the following is a factor of $4x^4 100x^2$?
 - ((a)) x + 5(b) 4x - 10
 - (c) $x^2 + 5$
 - (d) 10

Solution:

Factor out the GCF: the GCF of the coefficients is 4. The GCF for x is x^2 . Therefore the GCF is $4x^2$: $4x^4 - 100x^2 = 4x^2(x^2 - 25)$. The first two factors are monomials, so they cannot be factored further. The last term (x^2-25) is a difference of squares, which is factored as (x + 5)(x - 5). Therefore $4x^4 - 100x^2 = 4x^2(x + 5)(x - 5)$. The only factor that appears as solution is x + 5. 5. Write with only positive exponents:

-2

$$\left(\frac{12x^2y^{-3}}{4x^{-5}}\right)$$
(a) $-9y^6x^{-6}$
(b) $\frac{y^6}{9x^{14}}$
(c) $\frac{9y^6}{x^9}$
(d) $-\frac{6x^6}{y^6}$

Solution:

$$\left(\frac{12x^2y^{-3}}{4x^{-5}}\right)^{-2} = \left(3x^{2-(-5)}y^{-3}\right)^{-2}$$

$$= \left(3x^7y^{-3}\right)^{-2}$$

$$= 3^{-2}x^{-14}y^6$$

$$= \boxed{\frac{y^6}{9x^{14}}}$$

7. Factor: $4x^2 - 25$.

(a)
$$2(x-5)(x+5)$$

(b)
$$(2x+5)(2x-5)$$

- (c) Cannot be factored.
- (d) $(2x-5)^2$

Solution:

It has 2 terms, so if it can be factored it is because it is a difference of squares. It is: the first term is $(2x)^2$ and the second is 5^2 . Therefore $4x^2 - 25 = \boxed{(2x+5)(2x-5)}$. 6. Expand: $(a+b)^2$ (a) $a^2 - b^2$

(a)
$$a^{2} + 2ab + b^{2}$$

(b) $a^{2} + 2ab + b^{2}$
(c) $(a + b)(a - b)$
(d) $a^{2} + b^{2}$

Solution: $(a+b)^2 =$	$a^2 + 2ab + b^2$, as you
should have memorized.	

- 8. Which of the following is a factor of the polynomial 2cx + 5cy 6dx 15dy?
 - (a) c + 3d

((b))
$$2x + 5y$$

- (c) x 3y
- (d) Cannot be factored

Solution: It has 4 terms, so factor by grouping: 2cx + 5cy - 6dx - 15dy = c(2x + 5y) - 3d(2x + 5y) = (2x + 5y)(c - 3d)Therefore the answer is 2x+5y

- 9. Factor completely: $4x^2 + 11x 3$
 - (a) (2x+1)(2x-1)
 - (b) (x+3)(4x-1)(c) (x+1)(4x-3)
 - (d) Cannot be factored.

Solution:

It is a trinomial that is not monic, so use ac method. We need two numbers m, n so that m + n = 11 $m \cdot n = -12$ 12 and -1 work. Break the middle term 11xas -x + 12x and factor by grouping: $4x^2 + 11x - 3 = 4x^2 - x + 12x - 3$ = x(4x - 1) + 3(4x - 1)= (4x - 1)(x + 3)

11. Simplify.
$$\frac{45x^7 - 27x^3 + 36x^5}{-9x^3}$$
(a) $-5x^{21} + 3x^9 - 4x^{15}$
(b) $-5x^4 + 4x^2$
(c) $36x^4 - 36 + 27x^2$
(d) $-5x^4 + 3 - 4x^2$
Solution:

$$\frac{45x^7 - 27x^3 + 36x^5}{-9x^3} = \frac{45x^7}{-9x^3} + \frac{-27x^3}{-9x^3} + \frac{36x^5}{-9x^3} = \frac{-5x^4 + 3 - 4x^2}{-9x^3}$$

10. Simplify:
$$\frac{x^4x^{-7}}{x^5}$$
(a) $\frac{1}{x^5}$
(b) x^2
(c) $\frac{1}{x^8}$
(d) x^8

Solution:

$$\frac{x^4x^{-7}}{x^5} = x^{4+(-7)-5} = x^{-8} = \boxed{\frac{1}{x^8}}.$$

- **12.** Simplify $(4x^2 + 5x 4) (-6x^2 5x + 7)$. (a) $10x^2 + 10x - 3$
 - (b) $-2x^2 + 10x + 11$
 - (c) $10x^2 + 10x 11$
 - (d) $-24x^4 25x^2 28$

$$(4x^{2} + 5x - 4) - (-6x^{2} - 5x + 7)$$

= $(4x^{2} + 5x - 4) + (6x^{2} + 5x - 7)$
= $10x^{2} + 10x - 11$

- **13.** Which of the following is a factor of the polynomial $x^2 17x + 30$?
 - (a) (x+2)
 - (b) (x+15)
 - (c) (x 17)
 - (d)) (x 15)

Solution: We want two numbers m and n with m + n = -17, $m \cdot n = 30$. These numbers are -2 and -15. Therefore $x^2 - 17x + 30 = (x - 2)(x - 15)$. The only factor of these two that appears in the solutions is (x - 15). 14. Give the product in scientific notation.

$$(6 \times 10^{3})(7 \times 10^{7})$$
(a) 4.2×10^{10}
(b) 4.2×10^{11}
(c) 4.2×10^{9}
(d) 42×10^{10}

Solution:

$$(6 \times 10^3)(7 \times 10^7) = 42 \times 10^{3+7}$$

= 42 × 10^{10}
= 4.2 × 10^{11}

_____Free response questions start here. SHOW ALL WORK!!!

15. Factor completely: $3x^3 - 15x^2 + 18x$.

Solution:

Factor out the common factors and then factor the trinomial:

$$3x^{3} - 15x^{2} + 18x = 3x(x^{2} - 5x + 6)$$

= $3x(x - 2)(x - 3)$

16. Divide:
$$\frac{9x^3 - 6x^2}{3x^2}$$
.

Solution:

$$\frac{9x^3 - 6x^2}{3x^2} = \frac{9x^3}{3x^2} + \frac{-6x^2}{3x^2}$$

$$= 3x - 2.$$

17. Multiply: $(x^2 + 3x - 6)(x - 7)$

Solution: $(x^{2} + 3x - 6)(x - 7)$ $= x^{3} - 7x^{2} + 3x^{2} - 21x - 6x + 42$ $= x^{3} - 4x^{2} - 27x + 42.$

18. Factor completely: $x^6y^3 - 16x^2y^7$

Solution:

Factor the common factors first. Then factor the binomial as a difference of squares. Finally, one of the factors is also a difference of squares, so it can be factored:

$$\begin{aligned} x^6 y^3 &- 16x^2 y^7 \\ &= x^2 y^3 (x^4 - 16y^4) \\ &= x^2 y^3 (x^2 + 4y^2) (x^2 - 4y^2) \\ &= x^2 y^3 (x^2 + 4y^2) (x + 2y) (x - 2y) \end{aligned}$$

19. Multiply: (7x - 5)(7x + 5)

Solution:	
Use the formula $(a - b)$	$(a+b) = a^2 - b^2$:
(7x-5)(7x+5)	$= (7x)^2 - 5^2$
	$= 49x^2 - 25$