MTH 05, Test 3, V. 2, 11/20/18 Luis Fernández

NAME:

SOLUTION

There are nineteen questions. Multiple choice questions are 5 points each. Free response questions are 7 points each. For multiple-choice questions, circle your answer. For free-response questions, SHOW ALL WORK to receive full credit.

1. Write using only positive exponents: $(-x^3y^{-6}z^5)(8x^{-3}yz^4)$

(a)
$$-\frac{8z^{20}}{x^9y^6}$$

(b) $\frac{24x^6z^9}{y^5}$
(c) $-\frac{8z^9}{y^5}$
(d) $\frac{z^9}{8y^5}$

Solution:

$$(-x^{3}y^{-6}z^{5})(8x^{-3}yz^{4})$$

$$= -8x^{3+(-3)}y^{-6+1}z^{4+5}$$

$$= -8y^{-5}z^{9}$$

$$= -\frac{8z^{9}}{y^{5}}$$

3. Simplify
$$(4x^2 + 5x - 4) - (-6x^2 - 5x + 7)$$
.
(a) $-2x^2 + 10x + 11$
(b) $-24x^4 - 25x^2 - 28$
(c) $10x^2 + 10x - 11$

(d) $10x^2 + 10x - 3$

Solution:

$$(4x^{2} + 5x - 4) - (-6x^{2} - 5x + 7)$$

$$= (4x^{2} + 5x - 4) + (6x^{2} + 5x - 7)$$

$$= 10x^{2} + 10x - 11$$

2. Which of the following is a factor of the polynomial $x^2 - 17x + 30$?

(a)
$$(x+15)$$

((b))
$$(x - 15)$$

(c)
$$(x - 17)$$

(d) (x+2)

Solution: We want two numbers m and n with m + n = -17, $m \cdot n = 30$. These numbers are -2 and -15. Therefore $x^2 - 17x + 30 = (x - 2)(x - 15)$. The only factor of these two that appears in the solutions is (x - 15).

4. Simplify.
$$\frac{45x^7 - 27x^3 + 36x^5}{-9x^3}$$
(a) $-5x^4 + 4x^2$
(b) $-5x^4 + 3 - 4x^2$
(c) $36x^4 - 36 + 27x^2$
(d) $-5x^{21} + 3x^9 - 4x^{15}$

Solution:

$$\frac{45x^7 - 27x^3 + 36x^5}{-9x^3} = \frac{45x^7}{-9x^3} + \frac{-27x^3}{-9x^3} + \frac{36x^5}{-9x^3} = \frac{-5x^4 + 3 - 4x^2}{-5x^4 + 3 - 4x^2}$$

(a)
$$x^2$$

 $\frac{x^4x^{-7}}{x^5}$

(b) x^8

(c)
$$\frac{1}{x^8}$$

(d)
$$\frac{1}{x^5}$$

Solution:

$$\frac{x^4x^{-7}}{x^5} = x^{4+(-7)-5} = x^{-8} = \boxed{\frac{1}{x^8}}.$$

6. Factor completely: $4x^2 + 11x - 3$

(a)
$$(x+3)(4x-1)$$

- (b) Cannot be factored.
- (c) (x+1)(4x-3)
- (d) (2x+1)(2x-1)

Solution:

It is a trinomial that is not monic, so use *ac* method. We need two numbers m, n so that m + n = 11 $m \cdot n = -12$ 12 and -1 work. Break the middle term 11xas -x + 12x and factor by grouping: $4x^2 + 11x - 3 = 4x^2 - x + 12x - 3$ = x(4x - 1) + 3(4x - 1)= (4x - 1)(x + 3)

7. Multiply: $(3x-2)(x^2+4x-5)$ (a) $3x^3+10x^2-23x+10$ (b) $3x^3+10x^2+7x+10$ (c) $12x^6-12x^4+10$ (d) $3x^3-14x^2-23x+10$

Solution:

$$(3x - 2)(x^{2} + 4x - 5)$$

= $3x^{3} + 12x^{2} - 15x - 2x^{2} - 8x + 10$
= $3x^{3} + 10x^{2} - 23x + 10$

8. Divide and write in scientific notation: 3.5×10^7

(a)
$$7 \times 10^{10}$$

(b) 7×10^{12}

- (c) 0.7×10^{12}
- ((d)) 7×10^{11}

Solution	1:				
$\frac{3.5 \times 10^{2}}{5 \times 10^{-3}}$		$\frac{10^7}{10^{-5}} =$	$= 0.7 \times$	$10^{12} = 7$	$\times 10^{11}$

9. Which of the following is a factor of the polynomial 2cx + 5cy - 6dx - 15dy?

$$((a)) 2x + 5y$$

(b) Cannot be factored

(c)
$$x - 3y$$

(d) c + 3d

Solution: It has 4 terms, so factor by grouping:

$$2cx + 5cy - 6dx - 15dy$$

= $c(2x + 5y) - 3d(2x + 5y)$
= $(2x + 5y)(c - 3d)$
Therefore the answer is $2x+5y$

- **11.** Factor: $4x^2 25$.
 - (a) (2x+5)(2x-5)(b) $(2x-5)^2$
 - (c) Cannot be factored.
 - (d) 2(x-5)(x+5)

Solution:

It has 2 terms, so if it can be factored it is because it is a difference of squares. It is: the first term is $(2x)^2$ and the second is 5^2 . Therefore $4x^2 - 25 = \boxed{(2x+5)(2x-5)}$.

- **10.** Expand: $(a + b)^2$ (a) $a^2 + 2ab + b^2$ (b) $a^2 + b^2$
 - (c) (a+b)(a-b)
 - (d) $a^2 b^2$

Solution: $(a + b)^2 = a^2 + 2ab + b^2$, as you should have memorized.

- **12.** Which of the following is a factor of $4x^4 100x^2$?
 - (a) 4x 10
 - (b) 10
 - (c) $x^2 + 5$
 - ((d)) x + 5

Solution:

Factor out the GCF: the GCF of the coefficients is 4. The GCF for x is x^2 . Therefore the GCF is $4x^2$: $4x^4 - 100x^2 = 4x^2(x^2 - 25)$. The first two factors are monomials, so they cannot be factored further. The last term (x^2-25) is a difference of squares, which is factored as (x + 5)(x - 5). Therefore $4x^4 - 100x^2 = 4x^2(x + 5)(x - 5)$. The only factor that appears as solution is x + 5.

- **13.** Give the product in scientific notation.
 - $(6 \times 10^{3})(7 \times 10^{7})$ (a) 4.2×10^{11} (b) 42×10^{10} (c) 4.2×10^{9}
 - (d) 4.2×10^{10}

Solution: $(6 \times 10^3)(7 \times 10^7) = 42 \times 10^{3+7}$ $= 42 \times 10^{10}$ $= 4.2 \times 10^{11}$

14. Write with only positive exponents:

$$\left(\frac{12x^2y^{-3}}{4x^{-5}}\right)^{-2}$$
((a)) $\frac{y^6}{9x^{14}}$
(b) $-\frac{6x^6}{y^6}$
(c) $\frac{9y^6}{x^9}$
(d) $-9y^6x^{-6}$

Solution	:	
$\left(\frac{12x^2}{4x}\right)$	$\left(\frac{2y^{-3}}{-5}\right)^{-2} =$	$\left(3x^{2-(-5)}y^{-3}\right)^{-2}$
	=	$(3x^7y^{-3})^{-2}$
	=	$3^{-2}x^{-14}y^6$
e. SHOW ALL V	= VORK!!!	$\frac{y^6}{9x^{14}}$

_____Free response questions start here. SHOW ALL WORK!!!_

15. Factor completely: $x^6y^3 - 16x^2y^7$

Solution:

Factor the common factors first. Then factor the binomial as a difference of squares. Finally, one of the factors is also a difference of squares, so it can be factored:

$$\begin{aligned} x^{6}y^{3} - 16x^{2}y^{7} \\ &= x^{2}y^{3}(x^{4} - 16y^{4}) \\ &= x^{2}y^{3}(x^{2} + 4y^{2})(x^{2} - 4y^{2}) \\ &= x^{2}y^{3}(x^{2} + 4y^{2})(x + 2y)(x - 2y) \end{aligned}$$

16. Multiply: (7x - 5)(7x + 5)

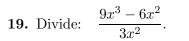
Solution: Use the formula $(a - b)(a + b) = a^2 - b^2$: $(7x - 5)(7x + 5) = (7x)^2 - 5^2$ $= 49x^2 - 25$ **17.** Factor completely: $3x^3 - 15x^2 + 18x$.

Solution:

Factor out the common factors and then factor the trinomial:

$$3x^{3} - 15x^{2} + 18x = 3x(x^{2} - 5x + 6)$$

= $3x(x - 2)(x - 3)$


18. Multiply: $(x^2 + 3x - 6)(x - 7)$

Solution:

$$(x^{2} + 3x - 6)(x - 7)$$

$$= x^{3} - 7x^{2} + 3x^{2} - 21x - 6x + 42$$

$$= x^{3} - 4x^{2} - 27x + 42.$$

Solution:		
$\frac{9x^3 - 6x^2}{3x^2}$	=	$\frac{9x^3}{3x^2} + \frac{-6x^2}{3x^2} \\ 3x - 2.$