m MTH~05,~Test~3,~V.~1,~11/20/18 Luis Fernández

NAME: SOLUTION

There are nineteen questions. Multiple choice questions are 5 points each. Free response questions are 7 points each. For multiple-choice questions, circle your answer. For free-response questions, SHOW ALL WORK to receive full credit.

- 1. Multiply: $(3x-2)(x^2+4x-5)$
 - (a) $3x^3 + 10x^2 + 7x + 10$
 - (b) $3x^3 + 10x^2 23x + 10$
 - (c) $3x^3 14x^2 23x + 10$
 - (d) $12x^6 12x^4 + 10$

Solution:

$$(3x-2)(x^{2}+4x-5)$$

$$= 3x^{3}+12x^{2}-15x-2x^{2}-8x+10$$

$$= 3x^{3}+10x^{2}-23x+10$$

3. Write using only positive exponents: $(-x^3y^{-6}z^5)(8x^{-3}yz^4)$

$$(-x^{\circ}y^{\circ}z^{\circ})(8x^{\circ})$$

- (a) $\frac{24x^6z^9}{y^5}$
- (b) $-\frac{8z^{20}}{x^9y^6}$
- (c) $\frac{z^9}{8y^5}$
- $\underbrace{\text{(d)}}_{-\frac{8z^9}{y^5}}$

Solution:

$$(-x^{3}y^{-6}z^{5})(8x^{-3}yz^{4})$$

$$= -8x^{3+(-3)}y^{-6+1}z^{4+5}$$

$$= -8y^{-5}z^{9}$$

$$= -\frac{8z^{9}}{y^{5}}$$

2. Divide and write in scientific notation:

$$\frac{3.5 \times 10^7}{5 \times 10^{-5}}$$

- (a) 7×10^{12}
- (b) 7×10^{10}
- (c) 7×10^{11}
- (d) 0.7×10^{12}

Solution:

$$\frac{3.5 \times 10^7}{5 \times 10^{-5}} = \frac{3.5}{5} \cdot \frac{10^7}{10^{-5}} = 0.7 \times 10^{12} = 7 \times 10^{11}$$

- **4.** Which of the following is a factor of the polynomial $x^2 17x + 30$?
 - (a) (x-15)
 - (b) (x+15)
 - (c) (x+2)
 - (d) (x-17)

Solution: We want two numbers m and n with

$$m+n=-17,$$

$$m \cdot n = 30.$$

These numbers are -2 and -15.

Therefore $x^2 - 17x + 30 = (x - 2)(x - 15)$.

The only factor of these two that appears in the solutions is (x-15).

- **5.** Simplify $(4x^2 + 5x 4) (-6x^2 5x + 7)$.
 - (a) $-24x^4 25x^2 28$
 - (b) $-2x^2 + 10x + 11$
 - (c) $10x^2 + 10x 3$
 - (d) $10x^2 + 10x 11$

Solution:

$$(4x^{2} + 5x - 4) - (-6x^{2} - 5x + 7)$$

$$= (4x^{2} + 5x - 4) + (6x^{2} + 5x - 7)$$

$$= 10x^{2} + 10x - 11$$

- **7.** Simplify: $\frac{x^4x^{-7}}{x^5}$.
 - (a) x^8
 - (b) x^2
 - (c) $\frac{1}{x^5}$
 - $\underbrace{\text{(d)}} \frac{1}{x^8}$

Solution:

$$\frac{x^4x^{-7}}{x^5} = x^{4+(-7)-5} = x^{-8} = \boxed{\frac{1}{x^8}}.$$

6. Simplify. $\frac{45x^7 - 27x^3 + 36x^5}{-9x^3}$

(a)
$$-5x^4 + 3 - 4x^2$$

(b)
$$-5x^4 + 4x^2$$

(c)
$$-5x^{21} + 3x^9 - 4x^{15}$$

(d)
$$36x^4 - 36 + 27x^2$$

Solution:

$$\frac{45x^7 - 27x^3 + 36x^5}{-9x^3} \\
= \frac{45x^7}{-9x^3} + \frac{-27x^3}{-9x^3} + \frac{36x^5}{-9x^3} \\
= \boxed{-5x^4 + 3 - 4x^2}$$

- **8.** Factor completely: $4x^2 + 11x 3$
 - (a) Cannot be factored.

(b)
$$(x+3)(4x-1)$$

(c)
$$(2x+1)(2x-1)$$

(d)
$$(x+1)(4x-3)$$

Solution:

It is a trinomial that is not monic, so use ac method.

We need two numbers m, n so that

$$m + n = 11$$

$$m \cdot n = -12$$

12 and -1 work. Break the middle term 11x as -x + 12x and factor by grouping:

$$4x^{2} + 11x - 3 = 4x^{2} - x + 12x - 3$$
$$= x(4x - 1) + 3(4x - 1)$$
$$= (4x - 1)(x + 3)$$

- **9.** Which of the following is a factor of the polynomial 2cx + 5cy 6dx 15dy?
 - (a) Cannot be factored
 - (b) 2x + 5y
 - (c) c + 3d
 - (d) x 3y

Solution:

It has 4 terms, so factor by grouping:

$$2cx + 5cy - 6dx - 15dy$$
= $c(2x + 5y) - 3d(2x + 5y)$
= $(2x + 5y)(c - 3d)$

Therefore the answer is 2x+5y

- **11.** Expand: $(a+b)^2$
 - (a) $a^2 + b^2$
 - (b) $a^2 + 2ab + b^2$
 - (c) $a^2 b^2$
 - (d) (a+b)(a-b)

Solution: $(a+b)^2 = a^2 + 2ab + b^2$, as you should have memorized.

- **10.** Factor: $4x^2 25$.
 - (a) $(2x-5)^2$
 - (b) (2x+5)(2x-5)
 - (c) 2(x-5)(x+5)
 - (d) Cannot be factored.

Solution:

It has 2 terms, so if it can be factored it is because it is a difference of squares. It is: the first term is $(2x)^2$ and the second is 5^2 . Therefore $4x^2 - 25 = (2x + 5)(2x - 5)$.

12. Write with only positive exponents:

$$\left(\frac{12x^2y^{-3}}{4x^{-5}}\right)^{-2}$$

- (a) $-\frac{6x^6}{y^6}$
- (b) $\frac{y^6}{9x^{14}}$
- (c) $-9y^6x^{-6}$
- (d) $\frac{9y^6}{x^9}$

Solution:

$$\left(\frac{12x^2y^{-3}}{4x^{-5}}\right)^{-2} = \left(3x^{2-(-5)}y^{-3}\right)^{-2}$$

$$= \left(3x^7y^{-3}\right)^{-2}$$

$$= 3^{-2}x^{-14}y^6$$

$$= \left[\frac{y^6}{9x^{14}}\right]$$

13. Which of the following is a factor of

$$4x^4 - 100x^2$$
?

- (a) 10
- (b) 4x 10
- (c) x+5
- (d) $x^2 + 5$

Solution:

Factor out the GCF: the GCF of the coefficients is 4. The GCF for x is x^2 .

Therefore the GCF is $4x^2$:

$$4x^4 - 100x^2 = 4x^2(x^2 - 25).$$

The first two factors are monomials, so they cannot be factored further.

The last term (x^2-25) is a difference of squares, which is factored as (x+5)(x-5).

Therefore $4x^4 - 100x^2 = 4x^2(x+5)(x-5)$.

The only factor that appears as solution is x+5.

14. Give the product in scientific notation.

$$(6 \times 10^3)(7 \times 10^7)$$

- (a) 42×10^{10}
- (b) 4.2×10^{11}
 - (c) 4.2×10^{10}
 - (d) 4.2×10^9

Solution:

$$(6 \times 10^{3})(7 \times 10^{7}) = 42 \times 10^{3+7}$$
$$= 42 \times 10^{10}$$
$$= 4.2 \times 10^{11}$$

_____Free response questions start here. SHOW ALL WORK!!!___

15. Factor completely: $3x^3 - 15x^2 + 18x$.

Solution:

Factor out the common factors and then factor the trinomial:

$$3x^{3} - 15x^{2} + 18x = 3x(x^{2} - 5x + 6)$$
$$= 3x(x - 2)(x - 3)$$

16. Multiply: (7x - 5)(7x + 5)

Solution:

Use the formula $(a - b)(a + b) = a^2 - b^2$:

$$(7x-5)(7x+5) = (7x)^2 - 5^2$$
$$= 49x^2 - 25$$

17. Factor completely: $x^6y^3 - 16x^2y^7$

Solution:

Factor the common factors first. Then factor the binomial as a difference of squares. Finally, one of the factors is also a difference of squares, so it can be factored:

$$x^{6}y^{3} - 16x^{2}y^{7}$$

$$= x^{2}y^{3}(x^{4} - 16y^{4})$$

$$= x^{2}y^{3}(x^{2} + 4y^{2})(x^{2} - 4y^{2})$$

$$= x^{2}y^{3}(x^{2} + 4y^{2})(x + 2y)(x - 2y)$$

18. Divide: $\frac{9x^3 - 6x^2}{3x^2}$.

Solution:

$$\frac{9x^3 - 6x^2}{3x^2} = \frac{9x^3}{3x^2} + \frac{-6x^2}{3x^2}$$
$$= 3x - 2$$

19. Multiply: $(x^2 + 3x - 6)(x - 7)$

Solution:

$$(x^{2} + 3x - 6)(x - 7)$$

$$= x^{3} - 7x^{2} + 3x^{2} - 21x - 6x + 42$$

$$= x^{3} - 4x^{2} - 27x + 42.$$