MTH 05, Test 1, V. 1, 09/27/18 Luis Fernández

SOLUTION NAME:

There are 20 questions. The 14 multiple choice are worth 5 points each; the 6 free response are worth 6 points each. For multiple-choice questions, circle your answer. For free-response questions, SHOW ALL WORK to receive full credit.

- 1. Evaluate: $-8^2 \frac{3}{7} \cdot 14 =$
- (a) -70
 - (b) 58

Solution:

(c) 70
(d) -65

$$-8^{2} - \frac{3}{7} \cdot 14 = -64 - \frac{3}{7} \cdot 14$$

$$= -64 - 6$$

$$= -70$$

- **2.** Add: $\frac{7}{9} + \frac{5}{12} =$
- (b) $\frac{13}{3}$

Solution: LCD is 36.

$$\frac{7}{9} + \frac{5}{12} = \frac{28}{36} + \frac{15}{36} = \boxed{\frac{43}{36}}$$

- 3. Solve the equation 9x 5 = 5x + 7.

$$\widehat{\text{(b)}} \ x = 3$$

(c)
$$x = 4$$

(d)
$$x = \frac{21}{2}$$

$$9x - 5 = 5x + 7$$

$$\Rightarrow 4x - 5 = 7$$

$$\Rightarrow 4x = 13$$

(b)
$$x = 3$$

(c) $x = 4$
(d) $x = \frac{21}{2}$

$$9x - 5 = 5x + 7$$

$$\Rightarrow 4x - 5 = 7$$

$$\Rightarrow 4x = 12$$

$$\Rightarrow x = \frac{12}{4} = \boxed{3}$$

4. Write the following sentence in symbols: twice the sum of c and d is 5.

Solution:

(a)
$$2c + d = 5$$

(b)
$$2d + c = 5$$

$$\widehat{\text{(c)}} \ 2(c+d) = 5$$

(d)
$$2 + c + d = 5$$

Twice (= two times) the sum of
$$c$$
 and d : $2(c+d)$. Therefore, the sentence can be

d)
$$2 + c + d = 5$$

fore, the sentence can be written as
$$2(c+d) = 5$$

The sum of c and d: (c+d).

- **5.** Find the value of: $2(3^2 \cdot 5 4^2)$.
- (a) 58
 - (b) -35
 - (c) 28
 - (d) 122
- Solution:

$$2(3^2 \cdot 5 - 4^2)$$

$$= 2 \cdot (9 \cdot 5 - 16)$$

$$= 2 \cdot (45 - 16)$$

$$= 2 \cdot (29) = 58$$

- **6.** Evaluate $\frac{6-5xy}{2x+y}$ when x=3 and y=-4.
- (a) 30
- (b) 33

(d)
$$-\frac{6}{5}$$

Solution:

(c)
$$-33$$

$$\frac{6-5\cdot 3\cdot (-4)}{2\cdot 3+(-4)} = \frac{6-(-60)}{2}$$

(d)
$$-\frac{6}{5}$$
 $=\frac{6+60}{2}=\frac{66}{2}=\boxed{33}$

- 7. Solve: 3(7x+1) = 4(5x+1) + 14
- (a) $x = \frac{9}{20}$
- - (d) x = -13

(b)
$$x = \frac{21}{41}$$
 $3(7x+1) = 4(5x+1) + 14$ $\Rightarrow 21x + 3 = 20x + 18$

$$(c) x = 15$$

$$\Rightarrow 21x + 3 = 20x + 18$$

$$\Rightarrow x + 3 = 18$$

$$\Rightarrow x + 3 = 18$$

$$\Rightarrow x = 15$$

8. Solve
$$\frac{x}{3} + 5 = 7$$

(a)
$$-4$$

$$\widehat{\text{(b)}} \ x = 6$$

(d)
$$x = \frac{2}{3}$$

Solution:

$$\frac{x}{3} + 5 = 7$$

$$\Rightarrow \frac{x}{3} = 2$$

$$\Rightarrow \frac{x}{3} = 2$$

Times 3 both sides:

$$\Rightarrow$$
 $x = 6$

9. Evaluate:
$$\left(-\frac{10}{9}\right)\left(-\frac{6}{25}\right)$$

$$\underbrace{\text{(a)}} \frac{4}{15}$$

(b)
$$\frac{125}{18}$$

(c)
$$-\frac{4}{15}$$

(d)
$$-\frac{60}{131}$$

$$\left(-\frac{10}{9}\right)\left(-\frac{6}{25}\right)$$

$$=\left(-\frac{2}{3}\right)\left(-\frac{2}{5}\right) = \boxed{\frac{4}{15}}$$

11. Evaluate:
$$-\frac{35}{6} \div \frac{14}{9}$$

(a)
$$-\frac{13}{54}$$

(b)
$$-\frac{77}{18}$$

(c)
$$-\frac{245}{27}$$

$$(d)$$
 $-\frac{15}{4}$

(b)
$$-\frac{77}{18}$$
 $-\frac{35}{6} \div \frac{14}{9} = -\frac{35}{6} \cdot \frac{9}{14}$ (c) $-\frac{245}{27}$ $= -\frac{5}{2} \cdot \frac{3}{2}$ $= -\frac{15}{4}$

10. Solve:
$$\frac{x-4}{3} = \frac{4}{5}$$

(a)
$$x = 4$$

(c)
$$x = \frac{16}{5}$$

(d)
$$x = -\frac{11}{4}$$

Solution: LCD is 15.

$$\frac{x-4}{3} = \frac{4}{5}$$

(c)
$$x = \frac{16}{5}$$

(d) $x = -\frac{11}{4}$
Common denominator:
$$\Rightarrow \frac{5(x-4)}{15} = \frac{12}{15}$$
Remove denominators:
$$\Rightarrow 5(x-4) = 12$$

$$\Rightarrow 5x - 20 = 12$$

$$\Rightarrow 5x = 32$$

$$\Rightarrow x = \frac{32}{5}$$

$$\Rightarrow 5(x-4) = 12$$
$$\Rightarrow 5x - 20 = 12$$

$$\Rightarrow 5x = 32$$

$$\Rightarrow x = 32$$

- (a) 29
- (b) 34
- (c) 5
- (d)) 18

Solution:

Let us say that the number we want is called "x".

Then "twice the number" is $2 \cdot x$. "Ten more than twice the number" is $2 \cdot x + 10$.

Thus, we get the equation:

$$2 \cdot x + 10 = 46$$

$$\Rightarrow 2 \cdot x = 36$$

$$\Rightarrow x = 18$$

Therefore the number is 18

- **13.** Evaluate exactly $-b + \sqrt{b^2 4ac}$ when a = 3, b = 5, c = (-2).
- (a) $-5 + \sqrt{30}$
- (b) -2

Solution:

$$-5 + \sqrt{5^2 - 4 \cdot 3 \cdot (-2)}$$

$$= -5 + \sqrt{25 - (-24)}$$

$$= -5 + \sqrt{25 + 24}$$

$$= -5 + \sqrt{49}$$

$$= -5 + 7 = \boxed{2}$$

- Free response questions start here. SHOW ALL WORK!!!
- **15.** Solve 5(x+2) = 2x 7

Solution:

If
$$5(x+2) = 2x - 7$$

 $\Rightarrow 5x + 10 = 2x - 7$
 $\Rightarrow 3x + 10 = -7$
 $\Rightarrow 3x = -17$
 $\Rightarrow x = -\frac{17}{3}$

- **14.** Evaluate g(2) for the function $g(x) = 3x^{2} - 4x + 2$
 - (a) -4

(b) 30

- (c) 2

Solution:

$$g(2) = 3 \cdot 2^{2} - 4 \cdot 2 + 2$$

$$= 3 \cdot 2^{2} - 4 \cdot 2 + 2$$

$$= 3 \cdot 4 - 4 \cdot 2 + 2$$

$$= 12 - 8 + 2$$

= 6

- - **16.** Twice a number minus 7 is equal to the same number plus 3. What is the number?

Solution:

Suppose that the number is x. Then 'twice the number' is 2x, and 'twice the number minus 7' is 2x - 7.

On the other hand, 'the number plus 3' is x+3.

Therefore, 'Twice a number minus 7 is equal to the same number plus 3' translates to 2x - 7 = x + 3.

Solve the equation: $2x - x = 3 + 7 \rightarrow x = 10$. Therefore, the number is 10

17. Solve
$$-5x + 1 = 17 - x$$

18. Evaluate:
$$\sqrt{36} + (-4)^2 = 22$$

Solution:

If -5x + 1 = 17 - x, adding x to both sides we get -4x + 1 = 17. Subtract 1 from both sides to get,

-4x = 16,

and divide both sides by (-4) to get

Solution:

 $\sqrt{36} = 6$ (because $6^2 = 36$).

$$(-4)^2 = (-4) \cdot (-4) = 16$$

$$\sqrt{36} + (-4)^2 = 6 + 16 = \boxed{22}$$

19. Solve the equation:
$$\frac{2x}{5} + \frac{7}{6} = \frac{x}{3} - 2$$

Solution:

The LCD is 30. Write all fractions with denominator 30 (note $2 = \frac{2}{1}$):

$$\frac{2x}{5} + \frac{7}{6} = \frac{x}{3} - \frac{2}{1}$$

$$\Rightarrow \frac{12x}{30} + \frac{35}{30} = \frac{10x}{30} - \frac{60}{30}$$

Remove denominators:

$$\Rightarrow 12x + 35 = 10x - 60$$

Subtract 10 x and 35 from both sides:

$$\Rightarrow 2x = -95$$

$$\Rightarrow x = -\frac{95}{2}$$

20. Evaluate:
$$\frac{4}{5} - \frac{2}{7} \div \frac{5}{14} = \boxed{0}$$

Solution:

$$\frac{4}{5} - \frac{2}{7} \div \frac{5}{14} = \frac{4}{5} - \frac{2}{7} \cdot \frac{14}{5}$$
$$= \frac{4}{5} - \frac{2}{1} \cdot \frac{2}{5} = \frac{4}{5} - \frac{4}{5} = \boxed{0}$$