
There are twenty-two questions, each worth 5 points. For multiple-choice questions, circle your answer. For free-response questions, SHOW ALL WORK to receive credit.

- 1. Solve: $\frac{3x}{7} \le \frac{15}{14}$
- (a) $x < \frac{2}{5}$
- (b) $x \le \frac{5}{2}$
- (c) $x \ge \frac{5}{2}$
- (d) x = 5

- **2.** Which equation's graph is parallel to that of y = 3x 14?
- (a) y = -3x + 8
- (b) $y = \frac{1}{3}x + 7$
- (c) y = 3x + 12
- (d) $y = -\frac{1}{3}x 11$

- **3.** Find the equation of the horizontal line passing through the point (-3, -4).
- (a) x = -3
- (b) $y = \frac{3}{4}x$
- (c) y = -4
- (d) $y = \frac{4}{3}x$

4. What is the slope of the line in the graph?

- (a) $-\frac{3}{4}$
- (b) $\frac{4}{3}$
- (c) $\frac{3}{4}$
- (d) $-\frac{4}{3}$

- **5.** Solve for t in the expression A = rt 3.
- (a) t = Ar + 3
- (b) $t = \frac{A+3}{r}$
- (c) t = 3
- (d) $t = \frac{r}{A} + 3$

7. What is the slope-intercept form of the equation 5x - 4y = 20?

(a)
$$y = 5x + 24$$

(b)
$$y = \frac{3}{2}x + 3$$

(c)
$$y = \frac{4}{5}x + 4$$

(d)
$$y = \frac{5}{4}x - 5$$

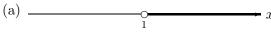
6. Solve for t in the equation $P = \frac{t}{4} + a$.

(a)
$$t = 4a + P$$

(b)
$$t = \frac{P - 4a}{2}$$

(c)
$$t = \frac{P - a}{4}$$

(d)
$$t = 4(P - a)$$

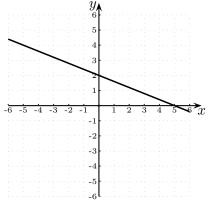

8. The area A of a trapezoid is given by the formula $A = \frac{B+b}{2} \cdot h$. If A = 90, B = 6, and b = 3, what is the value of h?

(b)
$$\frac{99}{2}$$

(d)
$$-53$$

- **9.** Use the formula $F = \frac{9}{5}C + 32$ to find F when C = 15.
- (a) -4
- (b) 37
- (c) 59
- (d) 81.2

11. Pick the graph of the solution to the inequality 10x - 10 > 6x + 6.

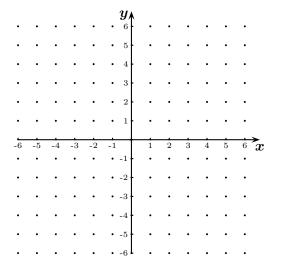

- (b) $\longrightarrow x$
- (d) a

- 10. Find x-intercept and y-intercept for the graph of the equation 2x 7y = 14.
- (a) x-intercept: (-7,0) and y-intercept: (0,2)
- (b) x-intercept: (7,0) and y-intercept: (0,-2)
- (c) x-intercept: (-14, 2) and y-intercept: (7, 14)
- (d) x-intercept: (0,0) and y-intercept: (2,7)

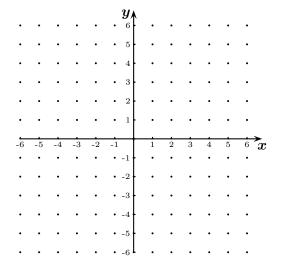
- 12. Find the slope and y-intercept for the graph of the equation 3x + 7y = 28.
- (a) Slope = $\frac{3}{7}$ and y-intercept: (0, -4)
- (b) Slope = $\frac{3}{7}$ and y-intercept: (4,0)
- (c) Slope = $-\frac{3}{7}$ and y-intercept: (0,4)
- (d) Slope = $-\frac{3}{7}$ and y-intercept: (0, 28)

- **13.** What is the slope of the line connecting the points (4,10) and (6,3)?
- (a) $\frac{13}{10}$
- (b) 4
- (c) $-\frac{7}{2}$
- (d) $\frac{1}{4}$

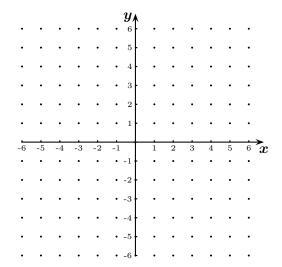
14. Choose the equation of the line in the graph.


- (a) y = 2
- (b) 5x y = 2
- (c) 5x 2y = 10
- (d) 2x + 5y = 10

_____Free response questions start here. SHOW ALL WORK!!!____


- **15.** Solve and graph the solution on the number line: $3 5(2x + 5) \ge 2(x + 4) 7x$.
- **16.** Find an equation for the line passing through the points (2,5) and (-2,7).

- 17. Find the slope and y-intercept of the line with equation 2x + 5y = 15.
- **18.** Find the equation of the line passing through the point (5,-2) and perpendicular to the line -2x + 5y = 1.


19. Graph $y = -\frac{3}{5}x + 2$ indicating at least two points.

20. Graph the equation x = 3 indicating at least two points.

21. Graph 5x - 3y = 15 indicating at least two points.

22. Solve the following system of equations. If there is no unique solution, say whether the system has no solutions or infinitely many solutions.

$$\begin{cases} 3x + 2y = 10 \\ 5x - 3y = 4 \end{cases}$$