There are twenty-two questions, each worth 5 points. For multiple-choice questions, circle your answer. For free-response questions, SHOW ALL WORK to receive credit.

1. What is the slope-intercept form of the equation 5x - 4y = 20?

(a)
$$y = \frac{3}{2}x + 3$$

(b)
$$y = 5x + 24$$

(c)
$$y = \frac{5}{4}x - 5$$

(d)
$$y = \frac{4}{5}x + 4$$

2. Use the formula $F = \frac{9}{5}C + 32$ to find F when C = 15.

(b)
$$-4$$

3. What is the slope of the line connecting the points (4, 10) and (6, 3)?

(b)
$$\frac{13}{10}$$

(c)
$$\frac{1}{4}$$

(d)
$$-\frac{7}{2}$$

4. Find x-intercept and y-intercept for the graph of the equation 2x - 7y = 14.

(a) x-intercept:
$$(7,0)$$
 and y-intercept: $(0,-2)$

(b) x-intercept:
$$(-7,0)$$
 and y-intercept: $(0,2)$

(c)
$$x$$
-intercept: $(0,0)$ and y -intercept: $(2,7)$

(d)
$$x$$
-intercept: $(-14,2)$ and y -intercept: $(7,14)$

- **5.** Solve for t in the expression A = rt 3.
- (a) $t = \frac{A+3}{r}$
- (b) t = Ar + 3
- (c) $t = \frac{r}{A} + 3$
- (d) t = 3

7. Solve for t in the equation $P = \frac{t}{4} + a$.

(a)
$$t = \frac{P - 4a}{2}$$

(b)
$$t = 4a + P$$

(c)
$$t = 4(P - a)$$

(d)
$$t = \frac{P-a}{4}$$

- **6.** The area A of a trapezoid is given by the formula $A = \frac{B+b}{2} \cdot h$. If A = 90, B = 6, and b = 3, what is the value of h?
- (a) $\frac{99}{2}$
- (b) 20
- (c) -53
- (d) 18

8. Pick the graph of the solution to the inequality 10x - 10 > 6x + 6.

9. Choose the equation of the line in the graph.

- (a) 5x y = 2
- (b) y = 2
- (c) 2x + 5y = 10
- (d) 5x 2y = 10

- **11.** Solve: $\frac{3x}{7} \le \frac{15}{14}$
- (a) $x \le \frac{5}{2}$
- (b) $x < \frac{2}{5}$
- (c) x = 5
- (d) $x \ge \frac{5}{2}$

- 10. Find the slope and y-intercept for the graph of the equation 3x + 7y = 28.
- (a) Slope = $\frac{3}{7}$ and y-intercept: (4,0)
- (b) Slope = $\frac{3}{7}$ and y-intercept: (0, -4)
- (c) Slope = $-\frac{3}{7}$ and y-intercept: (0, 28)
- (d) Slope = $-\frac{3}{7}$ and y-intercept: (0,4)

- 12. Find the equation of the horizontal line passing through the point (-3, -4).
- (a) $y = \frac{3}{4}x$
- (b) x = -3
- (c) $y = \frac{4}{3}x$
- (d) y = -4

13. What is the slope of the line in the graph?

- (a) $\frac{4}{3}$
- (b) $-\frac{3}{4}$
- (c) $-\frac{4}{3}$
- (d) $\frac{3}{4}$

- **14.** Which equation's graph is parallel to that of y = 3x 14?
- (a) $y = \frac{1}{3}x + 7$
- (b) y = -3x + 8
- (c) $y = -\frac{1}{3}x 11$
- (d) y = 3x + 12

- **15.** Find an equation for the line passing through the points (2,5) and (-2,7).
- **16.** Find the slope and y-intercept of the line with equation 2x + 5y = 15.

17. Graph the equation x = 3 indicating at least two points.

18. Graph $y = -\frac{3}{5}x + 2$ indicating at least two points.

- 19. Find the equation of the line passing through the point (5,-2) and perpendicular to the line -2x + 5y = 1.
- **20.** Solve and graph the solution on the number line: $3 5(2x + 5) \ge 2(x + 4) 7x$.

21. Solve the following system of equations. If there is no unique solution, say whether the system has no solutions or infinitely many solutions.

$$\begin{cases} 3x + 2y = 10\\ 5x - 3y = 4 \end{cases}$$

22. Graph 5x - 3y = 15 indicating at least two points.

