CSI 35: Discrete Mathematics II. Midterm 2

Professor Luis Fernández
Print Name: SOLUTION
INSTRUCTIONS:
 This exam contains 16 questions, 6 pages for a total of 106 points (points over 100 count as extra credit).
• You have 110 minutes to complete the exam.
 You must show all your work in order to get credit.
 You can use a non-graphing scientific calculator. No other electronic devices, notes or books are permitted.
Part I: Fill in the blanks. (4 points each)
1. A relation on a set A is a subset of $A \times A$.
2. A relation is an equivalence relation if it is reflexive. Symmetric, and wantitive.
3. A relation R on a set A is reflexive if for all $x \in A$, $(x, x) \in \mathbb{R}$
4. A relation R on a set A is symmetric if for all $x, y \in A$, $(x, y) \in R \implies (y \times) \in \mathbb{R}$.
5. A relation R on a set A is an integrated from X is X is an integrated from X and X is X is an integral X and X is X is an integral X is X and X is an integral X is X and X is an integral X is X .
6. A relation R on a set A is transitive if
$\forall x. y. z \in A. (x, y) \in \mathbb{R} \text{and} (y, z) \in \mathbb{R}.$
7. A relation on a set A is a partial order if it is reflexive, and transitive.
8 An element x in a poset (A, \prec) is a window \mathcal{A} element if $\forall y \in A, y \preceq x \implies y = x$.

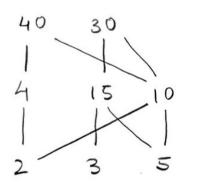
9. Two elements x, y in a poset (A, \leq) are called **comparable** if $X \Leftrightarrow Y$ or $Y \Leftrightarrow X$

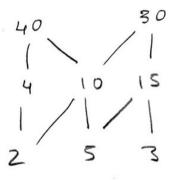
Part II: Write answers in spaces provided (10 points each)

10. Give an example of a symmetric relation on the set $\{a, b, c, d\}$ which is not reflexive. (List the pairs in your relation.)

For example $R = \{(a,b), (b,a)\}.$

- 11. Consider the poset $(\{2, 3, 4, 5, 10, 15, 30, 40\}, |)$.
 - (a) Draw the Hasse diagram.





(b) What are the minimal elements, if any? What are the maximal elements, if any?

Minind: 2,53

Maximal 30,40

13. Below is the zero-one matrix representating a relation R on the ordered set $\{a, b, c, d\}$:

$$\begin{bmatrix} 0 & 1 & 0 & 1 \\ 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

(a) List all the pairs in this relation

List all the pairs in this relation.

$$R = \left\{ (a,b), (a,d), (b,a), (b,b), (c,b), (c,d), (d,d) \right\}$$

(b) Explain why is R not symmetric.

(c) List all the pairs of the relation $R^2 = R \circ R$.

$$R = \{(a,a),(a,b),(a,d),(b,b),(b,d),(b,a),(c,a),(c,b),(c,d),(c,d),(c,d)\}$$

- 12. Let R be the (mod 5) relation on the integers (that is, $(x, y) \in R$ if 5 divides x y).
 - (a) List 6 elements of each of the equivalence classes $[1]_5$, $[7]_5$, $[23]_5$, $[4]_5$, and $[6]_5$.

$$\begin{bmatrix}
17 = \{..., 1, 6, 11, 16, 21, 26, ...\} \\
77 = \{..., 2, 7, 12, 17, 22, 27, ...\} \\
73 = \{..., 3, 8, 13, 18, 23, 28, ...\} \\
74 = \{..., 4, 9, 14, 19, 24, 29, ...\} \\
75 = \{..., 4, 9, 14, 19, 24, 29, ...\}$$

(b) Do the equivalence classes $[1]_5$, $[7]_5$, $[23]_5$, $[4]_5$ and $[6]_5$ form a partition of \mathbb{Z} ? If not, which equivalence class is missing?

- 14. In the poset $(\mathcal{P}(\{1,2,3,4,5\}),\subseteq)$, where $\mathcal{P}(S)$ denotes the power set of S,
 - (a) Are the sets $\{1,3,5\}$ and $\{1,3,4,5\}$ comparable? If so, how are they related in the partial order?

(b) Give a pair of incomparable subsets.

(c) Is this poset a total order? Why?

15. In the lexicographic order on $\mathbb{Z} \times \mathbb{Z}$, find integers n, m such that

(a)
$$(-3, m) \leq (-3, 2)$$

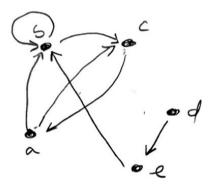
 $w = 1$, for exyle

(b)
$$(2,-2) \leq (2,n)$$
.
 $n = 0$, for example

16. .2in Consider the relation on the set $\{a, b, c, d, e\}$ given by

$$R = \{(a, b), (a, c), (b, b), (b, c), (c, a), (d, e), (e, b)\},\$$

(a) Draw a directed graph which represents the relation.



(b) Write the zero-one matrix of the relation.

(c) Is the relation transitive? If not, explain why.