CSI 35: Discrete Mathematics II. Midterm 2

Professor Luis Fernández

INSTRUCTIONS:			
• This exam contains 16 questions, 6 pages for a total of 106 points (points over 100 count as extra credit).			
• You have 110 minutes to complete the exam.			
• You must show all your work in order to get credit.			
• You can use a non-graphing scientific calculator. No other el permitted.	ectronic devices, notes or books are		
Part I: Fill in the blanks. (4 points each)			
1. A relation on a set A is a subset of			
2. A relation is an equivalence relation if it is			
, and	d		
3. A relation R on a set A is reflexive if for all $x \in A$,	·		
4. A relation R on a set A is symmetric if for all $x, y \in A$, $(x, y) \in R \implies$			
5. A relation R on a set A is if $\forall x, y \in A$, [($(x,y) \in R \land (y,x) \in R] \implies x = y.$		
6. A relation R on a set A is transitive if			
$\forall x, y, z \in A, $ and \Longrightarrow	$(x,z) \in R.$		
7. A relation on a set A is a partial order if it is			
, and	d		
8. An element x in a poset (A, \preceq) is a element	at if $\forall y \in A, \ y \leq x \implies y = x$.		
9. Two elements x,y in a poset (A, \preceq) are called comparable if	or		

Print Name:____

Part II: Write answers in spaces provided (10 points each)

10.	0. Give an example of a symmetric relation on the set $\{a, b, c, d\}$ which is not relation in your relation.)	lexive. (List the
11.	1. Consider the poset $(\{2, 3, 4, 5, 10, 15, 30, 40\},)$.	

(b) What are the minimal elements, if any? What are the maximal elements, if any?

(turn over)

- 12. Let R be the (mod 5) relation on the integers (that is, $(x, y) \in R$ if 5 divides x y).
 - (a) List 6 elements of each of the equivalence classes $[1]_5$, $[7]_5$, $[23]_5$, $[4]_5$, and $[6]_5$.

(b) Do the equivalence classes $[1]_5$, $[7]_5$, $[23]_5$, $[4]_5$ and $[6]_5$ form a partition of \mathbb{Z} ? If not, which equivalence class is missing?

13. Below is the zero-one matrix representating a relation R on the ordered set $\{a,b,c,d\}$:

$$\begin{bmatrix} 0 & 1 & 0 & 1 \\ 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

(a) List all the pairs in this relation.

(b) Explain why is R not symmetric.

(c) List all the pairs of the relation $R^2 = R \circ R$.

- 14. In the poset $(\mathcal{P}(\{1,2,3,4,5\}),\subseteq)$, where $\mathcal{P}(S)$ denotes the power set of S,
 - (a) Are the sets $\{1,3,5\}$ and $\{1,3,4,5\}$ comparable? If so, how are they related in the partial order?

(b) Give a pair of incomparable subsets.

(c) Is this poset a total order? Why?

- 15. In the lexicographic order on $\mathbb{Z} \times \mathbb{Z}$, find integers n, m such that
 - (a) $(-3, m) \leq (-3, 2)$
 - (b) $(2,-2) \leq (2,n)$.

(turn over)

$$R = \{(a,b), (a,c), (b,b), (b,c), (c,a), (d,e), (e,b)\},\$$

(a) Draw a directed graph which represents the relation.

(b) Write the zero-one matrix of the relation.

(c) Is the relation transitive? If not, explain why.