
MATH CSI 32 - Programming II Professor Luis Fernández

TEST 2. Time allowed: From 1pm on Thursday 04/23/2020to 11:59pm on Friday 04/24/2020.

Instructions

• Do the following questions. The value of each question is next to the question number. If you do more

than 100 points, the additional will be extra credit.

• All the files required in the exam are located at the usual webpage, under “Test 2 files”:

https://fsw01.bcc.cuny.edu/luis.fernandez01/web/teaching/classes/csi32/csi322020-1.html. In addition,

the links in this document take you directly to the files you need to download.

• Make sure your programs compile and run, although partial credit may be given even if it does not.

• Solve each exercise in a single file, and name each file using the naming convention. For example, for

exercise 2, I would upload “LFernandez.ex3.cpp”. If you really prefer, for the exercises involving classes

you can use one file for the header, one for the class, and one for the main part. But make sure to make

this clear.

• When you are finished, upload your files to the following Dropbox link:

https://www.dropbox.com/request/tK6G3R0XiOLp0iqsa5zY.

.
Rules

• You must use the names for the variables, and follow closely the instructions in the exercises.

You may use a different way of doing it, but the general structure has to be the one specified in the

exercise.

• You may not copy/paste from the internet. However, you can use the book, and you can look for

code in the internet and adapt it to your needs.

• You may not get outside help except from me (I may give you a hint if you ask).

• By uploading the solution of the exercises in this test, you implicitly commit to the following: any

violation of the previous two rules above will result on the total invalidation of the test.

1.[20] Download the file timeclassexam2.cpp that contains the definition of class time (this is the one that we have

been doing in class) and do the following modifications:

a) Write a main part of the program where you define an object time1 of class Time initialized to 11:35:34pm.

b) In the same main part, define a variable refTime1 that is a reference to the object time1 and print its value

using the member function showTime24().

c) In the same main part, define a pointer time1Ptr that is a pointer to the object time1 and print its value

using the member function showTime24().

d) Modify the destructor of class Time so that it prints “I am being destroyed!!” in a new line when an object

is destroyed.

e) Define the friend external function subTime that takes two Time objects as input and returns another Time

object that is the difference between the two input times. If the difference is less than 0, add 24 hours to it

(this way, when t2 is greater than t1, t1 − t2 is interpreted as the amount of time from time t2 to time t1
tomorrow). Test it in the main part of the program by subtracting 14:56:52 from 13:34:45.

[Hint: convert both times to seconds as we did with the external addTime function, but subtract them instead

of adding them.]

https://fsw01.bcc.cuny.edu/luis.fernandez01/web/teaching/classes/csi32/csi322020-1.html
https://www.dropbox.com/request/tK6G3R0XiOLp0iqsa5zY
https://fsw01.bcc.cuny.edu/luis.fernandez01/web/teaching/classes/csi32/test2/timeclassexam2.cpp


2.[20] Write a program whose main part contains two variables: var1 of type string and var2 of type long

double. Then in the same main part, write statements (in sequence) of the following.

a) Define a pointer varPtr that points a string.

b) Make varPtr point to var1.

c) Use varPtr to assign the value “Good news!” to var1.

d) Print out the address (in the computer) of var2, followed by an endl.

e) Use the pointer varPtr to display the value of the variable it points to.

f) Can you make varPtr point to var2? Explain why or why not (write the answer as a comment in the main

part of the program).

3.[20] Write a program with the definition of class Rectangle that has:

• Data members length and width, of type double, each of which defaults to 1.

• The constructor, that takes two doubles (the length and the width)

• Function members setLength, setWidth, that set the length and width of the rectangle.

• Function member perimeter that finds the perimeter of the rectangle.

• Function member area that finds the area of the rectangle.

Provide a main part of the program where you define an object of class Rectangle and you use the functions

perimeter and area to find the perimeter and area of the object, printing out the length, the width, the

perimeter, and the area in a single line.

4.[20] Write a program where you define class Card, with the cards of a poker deck (excluding jokers). Your class

must have:

• int private members suit and value, which are the suit (with values 0, 1, 2, 3, corresponding to Spades,

Diamonds, Clubs, Hearts) and the value (with values 0 through 12, corresponding to Ace, 2, 3, . . . , 10,

Jack, Queen, King) (thus, if suit is 2 and value is 10, the card is the Jack of Clubs).

• Constructor and function setCard that take two integers as arguments, the first between 0 and 12 (to set

the value) and the second between 0 and 3 (to set the suit). They should check that the values entered

are correct.

• Functions getValue and getSuit that return the value and suit of the card, respectively.

• Function printCard that prints out the card in the format “Ace of Spades”, or “2 of Hearts”, or “Queen

of Diamonds”.

Write a main part of the program where the user is asked to enter ’d’ to draw a card at random or ’q’ to

quit. When ’d’ is entered, use appropriate rand() statements to pick a random value and suit, generate a

card object with that value and suit and print it out using the function printCard().



5.[20] Download the point.cpp class (or you can use the one you uploaded for HW 9). (Note that there is one small

difference with the HW 9 exercise: the size of the board, which was 40 by 40 in the exercise, is set at the

top using xSize and ySize; this way you can try different board sizes easily.) In the same file, define a class

PointArray with the following members:

• One data member ptArray which is a vector of points (that is, vector <Point> ptArray).

• The constructor and set function setArray (which receive a vector of Points as argument).

• A plot function void plotArray() that plots the points in a similar way as you did in the Point class.

Note that all the points should be plotted at the same time. Use this class to generate a random vector

of 100 Points and plot it. The output may look like:

20 * * *
19 * * * * * *
18 * * *
17 * * * *
16 * * *
15 * * * *
14 * * * * *
13 * * *
12 * * * * * *
11 * * * * *
10 * * * *
9 * * * *
8 * * * * * *
7 * * * *
6 * *
5 * * * * * *
4 * * * * *
3 * * *
2 * * *
1 * * * *
0 * *
0 1 2 3 4 5 6 7 8 91011121314151617181920

[Hint: for the plotArray function, the pseudocode can be something like

for j from ySize to 0 (y coordinate going down)
for i from 0 to xSize (x coordinate going right)

for each element in arrPt
{

if x and y coordinates of element are i and j, cout “*” and increase i by 1;
}

cout “ ” after the end of the innermost loop but inside the second loop.
then cout an endl after the end of the inner loop.

This assumes that you are using xSize and ySize as the dimensions of your drawing board. ]

https://fsw01.bcc.cuny.edu/luis.fernandez01/web/teaching/classes/csi32/test2/point.cpp


6.[15] (You need to do exercise 4 before doing this one. Do it as an addition to the file in exercise 4 since you

have to use the class Card; but make sure you upload it as a different file).

Define a class DeckOfCards as follows:

• One data member deck that is a vector of Cards.

• The constructor should receive no arguments and produce a vector of 52 different Cards ordered by suit

(Spades, Diamonds, Clubs, Hearts) and by value (1, 2, . . . , Queen, King).

• A member function showDeck that prints out the cards in the deck, ordered in rows of 13 cards each,

ordered left to right. Each card should be printed using value and suit with the format “ 2S” (2 of Spades),

or “ KH” (King of Hearts) — you may want to redefine the function showCard from exercise 4 to do this.

• A member function shuffleDeck that changes the order of the elements in the vector deck. To do this,

pick two random cards in the deck and swap them, and repeat this 500 times.

• An external friend function mergeDecks that takes two DeckOfCards objects and returns a new Deck-

OfCards object made by merging the two decks, one after the others.

In the main part, define two DeckOfCards object, show one of them, then shuffle one of them and show it,

then merge them, and finally show the resulting (double) deck. The output may look like:

New deck:

AS 2S 3S 4S 5S 6S 7S 8S 9S 10S JS QS KS
AD 2D 3D 4D 5D 6D 7D 8D 9D 10D JD QD KD
AC 2C 3C 4C 5C 6C 7C 8C 9C 10C JC QC KC
AH 2H 3H 4H 5H 6H 7H 8H 9H 10H JH QH KH

Shuffled deck 1:

4H 8H 4S 4C 3D 6S 2C 7D KD 3H AS JS 7H
QH 9S JD 8C AH QD 2D AC KH JH 9H JC 3C
9D 6C 5H 10S QS KC 5C 9C QC 10D KS 5S 5D
8D 6H 3S 2S 4D 10H 7S AD 8S 2H 10C 6D 7C

Shuffled merged decks:

AS 2S 3S 4S 5S 6S 7S 8S 9S 10S JS QS KS
AD 2D 3D 4D 5D 6D 7D 8D 9D 10D JD QD KD
AC 2C 3C 4C 5C 6C 7C 8C 9C 10C JC QC KC
AH 2H 3H 4H 5H 6H 7H 8H 9H 10H JH QH KH
4H 8H 4S 4C 3D 6S 2C 7D KD 3H AS JS 7H
QH 9S JD 8C AH QD 2D AC KH JH 9H JC 3C
9D 6C 5H 10S QS KC 5C 9C QC 10D KS 5S 5D
8D 6H 3S 2S 4D 10H 7S AD 8S 2H 10C 6D 7C



7.[15] (You need to do exercise 5 before doing this one. Do it as an addition to the file in exercise 5 since you

have to use classes Point and Pointarray; but make sure you upload it as a different file).

Define a class Rectangle with:

• Data members: two Point objects corresponding to the lower left corner and the upper right corner of

the rectangle.

• Two constructors and two member functions setRect, one that takes two Point objects as input and

one that takes 4 integers as inputs (the x and y coordinates of the lower left and upper right corners of

the rectangle). Validate the input (points should be within the board defined in class Point, and the

coordinates of the lower left corner should be less than the corresponding coordinates of the upper right

corner) and default to the rectangle with lower left corner (0, 0) and upper right corner (1, 1).

• Get functions that return the x and y coordinates of the lower left and upper right corners: getXll (get

x coordinate of lower left corner), get getYll, getXur, and getYur.

• Member function plotRectangle that plots the rectangle object with ’*’ characters (to do this, define a

vector of Points and plot it using plotArray from exercise 5).

In the main part, define a Rectangle object and plot it using plotRectangle. For example, the plot of the

object Rectangle rect{5,8,14,12} may look like

20
19
18
17
16
15
14
13
12 * * * * * * * * * *
11 * * * * * * * * * *
10 * * * * * * * * * *
9 * * * * * * * * * *
8 * * * * * * * * * *
7
6
5
4
3
2
1
0
0 1 2 3 4 5 6 7 8 91011121314151617181920


