a70 Chapt

= T A

er8 Pointers

Built-In Arrays

inters and

xactly as built-in array names .,

Section 8.9 Re

Jationship Betwee™ f:n be suhmipmd ¢

0 built-in arrays

nes to t

I‘I,E ﬁl‘St dﬁmﬂnt Gr.‘l h‘l.l.'iI.T-L'- r

« Pointers that point

« [n
the offset is the same

inter/offset notation -3

2), if the pointer PO
as an array subS.CI'iF[‘

be w_[i[tﬂﬂ WITh

a poin

ressions €an

arate pointer t

ter and an offset, using ¢jy/,,.
hat points to the built-in 4,

B O™ e ma

« All subscripted array €Xp

| i i sep
| i : r or using @
| built-in array’s name 5 a polnte

; tional) o
Pniurmﬂﬁdsmig:tg value repres-:nted as a character in single quorc. 7y,
2 3‘E‘i]'Islsl_-l'lﬂ-::.lirl'c\::;g,::l value of the character in the machine’s characre; o,
I 4
< treated as @ single unit. A str
* fand $.

Section 8.10

+ A character constant
value of a character constant

| « A string is a series of characte
various special characters such as +, - _ |
i + String literals or string constants (p. 365) are written in double quotation marks.

= A poim:r-based string is a built-in array of chars ending "T'ilh_ a null ChﬂIaliﬂtEr { ‘ \0*; p. 365),
which marks where the string terminates in memory. A string 1s accessed via a pointer to its firy
character.

The result of sizeof for a string literal is the

character.
A string literal may be used as an inidializer for a built-in array of chars or a variable of wpe

const char®,

You should always declare a pointer to a string literal as const char®.

When declaring a built-in array of chars to contain a C string, the built-in array must be large
enough to store the C string and its terminating null character.

If a string is longer than the built-in array of chars in which it's to be stored, characters beyond

the end of the built-i ' : ; g :
t logic ﬂmrz ilt-in array will overwrite data in memory following the built-in array, leading

You can access individual characters jn a stri

ing may include letters, digit

length of the string including the terminating ny

- -

. ———————— e —

R e R
-

ng directly with array subscript notation.

3
B
g
g
g
B
g
o
o]

The cin uhj:,;t :
i object provides the memb i
into a built-in array of chars, The F‘;’ function get1ine (p. 366) o input an entire line of ret

- . ; neri
Thn:h the line of text will be stored almﬂﬂl:akcs three arguments—a built-in array of char in
\n" as a default valye, ; gt and a delimiter character. The third argumen® -
i . ﬁ- bl.lil'l.‘—in arra '

v of chars e :
! T Presenty .
he characters of the String are autﬁitaulz:g-mmmmﬂ string can be output with cout and <

4 terminari i
nating null characrer is encountered:

A
Answe
D A poa of the ollow

Pointer is 4 s
b) A pointer ghuu;a;ﬁlt that con g

i 0s as jtg
initial: val B
tialized ¢ ue the of another variable:

8.2

i
i 4
)

8.3

Self-Review Exercises 371

b) A pointer that is declared to be of type void* can be dereferenced.
c) A pointer of one type can’t be assigned to one of another type without a cast operation.

For each of the following, write C++ statemengs that perform the specified rask. Assume

I:i;lli double-precision, floating-point numbers are stored in eight bytes and thar the startin g address

of the L TRy AL 0hlex 1ﬂ€!25ﬂ0 in memory. Each part of the exercise should use the re-
sults nfpr:ﬁous parts where appropriate.

B.4

a) Declare a built-in array of type double called numbers with 10 elements, and inidalize

the elements to the values 0.0, 1.1, 2.2, ..., 9.9. Assume thar the constant size has
been defined as 10,

b) Declare a pointer nPtr that points to a variable of type double.

c) Usea for statement to display the elements of built-in array numbers using array sub-
script notation. Display each number with one dj git to the right of the decimal point.

d) Write two separate statements that each assign the starting address of built-in array num-
bers to the pointer variable nptr.

e) Usea for statement to display the elements of built-in array numbers using pointer/off-
set notation with pointer nper,

f) Use a for statement to display the elements of built-in array numbers using pointer/off-
set notation witch the built-in array’s name as the pointer.

g) Usea for statement to display the elements of built-in array numbers using pointer/sub-
script notation with pointer nPtr.

h) Refer to the fourth element of built-in array numbers using array subscript notation,
pointer/offset notation with the built-in array’s name as the pointer, pointer subscript
notation with nPtr and pointer/offset notation with nptr,

i) Assuming that nPtr points to the beginning of built-in array numbers, whar address is
referenced by nPtr + 87 What value is stored ac thar location?

i} Assuming that nPtr points to numbers[5], what address is referenced by nPtr after nPtr
-= 4 is executed? What's the value stored at thar location?

For each of the following, write a statement that performs the specified task. Assume that dou-

ble variables number1 and number2 have been declared and thar number has been initialized to 7. 3.

8.5

8.6
timu an

a) Declare the variable doublePtr to be a pointer to an object of type double and initialize
the pointer to nullptr.

b) Assign the address of variable number1 to pointer variable doublePtr,

c) Display the value of the object pointed to by doubleptr.

d) Assign the value of the object pointed to by doublePtr to variable number2.

¢) Display the value of number2.

f) Display the address of number1.
g) Display the address stored in doublePtr. Is the address the same as that of number1?

Perform the task specified by each of the following statements: _
a) Write the funcrion header for a function called exchange that takes two pointers to dou-

ble-precision, floating-point numbers x and y as parameters and does not recurn a value.
b) Write the function prototype without parameter names for the function in part (a).
) Write two statements thar each initialize the built-in array of chars named vowel with
the string of vowels, "AETOU".

Find the error in each of the following program segments. Assume the following declara-

d statements:

Int* 2Ptr; // zPtr will reference built-in array 2
int number:

i"t z[]{ W L] " " }:

a) ++zZPtr;

Can-

s ¢: the address Operatoy

o W W e e iy TR OTEEEE TR R R R e W AT e e e T

Exercises 373

¢) cout << << *doublePtr << endl:
d) number2 = *doublePtr;

£) cout =« << number2 << endl;

f) cout =< e Smbiarl << andl:

E') S <= doublePtr << endl;

Yes, the value is the same.

8.5 a) void exchange(double® x, double® y)
b) veid exchange(double*, double*);
¢) char vowel[1{ * H
char vowel[1{ . - . . . }:

g.6 a) Error: zPtr has not been initialized.
Correction: Initialize zPtr with zPtr = z; (Parts e depend on this correction.)

b) Error: The pointer is not dereferenced.

Correction: Change the statement to number = *zPtr:
¢) Error: zPtr[2] is not a pointer and should not be dereferenced.
Correction: Changﬂ *zPtr[2] to zPrr[2].

d) Error: Referring to an out-of-bounds built-in array element with pointer subscripting.
Correction: To prevent this, change the relational operator in the for statement o < or
change the 5 to a 4,

e) Error: Trying to modify a built-in array’s name with pointer arithmetic.

Correction: Use a pointer variable instead of the built-in array’s name to accomplish
pointer arithmetic, or subscript the built-in array’s name to refer to a specific element.

Exercises

8.7 (True or False) State whether the following are true or false. If false, explain why.
a) Two pointers that point to different built-in arrays cannot be compared meaningfully.
b) Because the name of a built-in array is implicitly convertible to a pointer to the first el-
ement of the built-in array, built-in array names can be manipulated in the same man-
ner as pointers.

8.8 (Write Cs+ Statements) For each of the following, write C++ statements that perform the

specified task. Assume that unsigned integers are stored in four bytes and thar the starting address

of the built-in array is at location 1002500 in memory.

a) Declare an unsigned int built-in array values with five elements inirialized to the even
integers from 2 to 10. Assume that the constant size has been defined as 5.

b} Declare a pointer vPtr that points to an object of type unsigned int.

¢} Use a for statement to display the elements of built-in array values using array sub-
script notation.

d) Write two separate statements that assign the starting address of built-in array values
to pointer variable vPtr.

¢) Usea for statement to display the elements of built-in array values using pointer/offset
notation.

f) Usea for statement to display the elements of built-in array values using pointer/offset
notation with the built-in array’s name as the pointer.

8l Usea for statement to display the elements of built-in array values by subscriptin g the
pointer to the built-in array.

h) Refer to the fifth element of values using array subscript notation, pointer/offset nota-
tion with the built-in array name’s as the pointer, pointer subscript notation and point-

_ erloffset notarion.

1) What address is referenced by vPtr + 32 What value is stored at that location?

F

374 Chapter 8 Pointers

e T what address is referenced by yp,,
ts 0

location? .
f the following, write a single statement thyy B

e Aﬁu—lﬂing tha‘{ HfPtr Po-in
; Whar value is stored at that

the specified task. Assume
been initialized ro 200000. P-u-inl‘ﬁl' toan Dbjﬁ-‘ﬂl’ DFE}’PE Tong.

b) Assign the address of variable valuel to poiner variable TengPtr.
c) Di:gina}r the value of the object pointed to by longPtr. o
d) Assign the value of the object pointed to by longPtr to variable valuez.

¢) Display the value of value2.

: address of valuel. .
g E::::-ll:]{ dﬂ: address stored in TongPtr. Is the address displayed the same as vaTuer ¢

8.10 (Function Headers and Prototypes) Perform the task in each of the f‘crllmv.':ing: _

a) Write the function header for function zero that rakes a long integer b_1.qu—in armiy
parameter bigIntegers and a second parameter representing the array’s size and dou
not return a value.

b) Write the function prototype for the function in part (a).

¢) Write the function header for function add1AndSum that takes an integer built-in am
parameter oneTooSmall and a second parameter representing the array’s size and retum:
an integer.

d) Write the function prototype for the function described in part (c).

811 (Find the Code Errors) Find the error in each of the following segments. If the error canbe
corrected, explain how.
a) int* number:
cout << number << endl;
b) double* realPtr:
long* integerPtr;
integerPtr = realptr;
c) dntw x, 'H
X = ¥
d} char g[1{ this 15 »
for (; *s |a "N0'5 4es) {
COUT <2 *g ..

H
e) shorts

tharacier ar ray"}s
.

numPtr, result;
voids: gen!rithr{numPtr'}'

result = *genericPer , 1.
f) double x = 1.3, £

double xPtrigx}.
COUL <« %Ptr << end] -
B.12 (Simulation: Th, .
the tortoise angd the hare, Yﬂu‘ll 'r&tHﬂ:l'!] In ﬂ'lis eXercise n i Jassic ract I.:'l
mmﬁﬂhlt event, use mﬂdnm l'l'u_mb,c.r generatj » Youll re-create IEI:I- fan O thi
: fation to develop a simulatio
~Uf contenders begin ype Tace ap & W
Position]lj}ng ':I'I.C Face Course Ele .Squm "

H:.
square 70 g rewarded E“J-Sh Ilm_n is aﬂf 70 Squares, Elt‘.h square rﬁprﬂﬂﬂﬁ 2 pC‘-'i"I A

? with a pgil T o P
of a ﬂ'Pi::}_' Mountain, g, ms:;i;ﬂFﬂFrﬂI] h carroyg andsq;: © m_‘r'l.l:'lt first u:unl:end::r W """::[;1»: sidé
152 clock thay e} Once the “Ontenders |ogn - course weaves its way

use ﬁm:::icm MoveTy th ; T I':
Ftgd ¥ i : i
e and -;..,,E"”e _| Ith each tick of the C|O-Ck, your pmgmm ﬁ::lr ;

ust the Position of the animals ﬂﬂ‘:"'ding

rules i
tion ol

Lse

Start eac
move thy
Ger
12i<1
“slow ple
Beg

|

[

Fﬂl’i
letter T in
land on ¢
OUCHI 1y |
Ii:] Shﬂl.lll

After
display ¢h
YAYL 1} If
May wan¢
anima] w;

8.3 g

---_-_‘_-_‘_-_-—-——

£ OEx,
4/ Wha
'inclu

Using

b - R PR

vVoid

Fl'g* 8.19 |

—

Fig .
819 | What does this program do? (Part | of 2.)

L w T R e B S
e L R R i e e AN L BN SO

Exercises 375

rules in Fig. 8.18. These functions should use pointer-based pass-by-reference to modify the posi-
ion of the tortoise and the hare,

> o M, .=_ 'E:"r 1.,b.

Tortoise Fast plod 50% 3 squares to the right
Slip 20% 6 squares to the left
Slow plod 30% 1 square to the right

Hare Sleep 20% No move at all
Big hop 20% 9 squares to the right
Big slip 10% 12 squares to the left
Small hop 30% I square to the right
Small slip 20% 2 squares to the left

Fig. 8.18 | Rules for moving the tortoise and the hare

Use variables to keep track of the positions of the animals (i.e., position numbers are 1-70).
Start each animal at position 1 (i.e., the “starting gate”). If an animal slips left before square 1,
move the animal back to square 1.

Generate the percentages in Fig. 8.18 by producing a random integer 7 in the range
1245 10. For the tortoise, perform a “fast plod” when 1 € ; < 5, a “slip” when 6 £ i< 7ora
“slow plod” when 8 < 7 < 10. Use a similar technique to move the hare.

Begin the race by displaying

BANG 1111
AND THEY'RE QFF 1!11]

For each tick of the clock (i.e., each iteration of a loop), display a 70-position line showing the
letter T in the tortoise’s position and the letter H in the hares position. Occasionally, the contenders
land on the same square. In this case, the torwise bites the hare and your program should display
OUCH! 11 beginning at that position. All positions other than the T, the H or the OUCH! 11 (in case of 2
tie) should be blank.

After displaying each line, test whether either animal has reached or passed square 70. If so,
display the winner and terminate the simulation. If the tortoise wins, display TORTOISE WINS! 11
YAY! 11 If the hare wins, display Hare wins. Yuch. If both animals win on the same clock tick, you
My want to favor the tortoise (the “underdog”), or you may want to display It's a tie. If neither
Mimal wins, perform the loop again to simulate the next tick of the clock.

13 (What Does This Code Do?) What does this program do?

/7 Ex. 8.13: ex08_13.cpp

f{ What dpes this program do?
tinclude <iostream-

Using Namespace std:

e B TN T A —

void Mysteryl(char®, const char®*); // prototype

Special Section: Building Your Own Computer 377

wre. We iﬂt.l'ﬂdl.lﬂﬂ maﬂfhiﬂﬂ-h“guagﬂ programming and write several machine-language programs.
To make this an '“TSP‘EC'QHF valuable experience, we then build a computer (using software-based
;imulation) on which you can execute your machine-language programs!?

8.15 (Machine-Language Programming) Lets create a computer we'll call the Simpletron. As its
pame implies, it’s a mmp!r: ma.chme, but, as we'll soon see, it's a powerful one as well. The Sim-
pletron runs programs written in the only language it directly understands, thar is, Simpletron Ma-
chine Language, or SML for short,

The Simpletron contains an accumulator—a “special register” in which information is put
before the Simpletron uses that information in calculations or examines it in various ways. All
information in the Simpletron is handled in terms of words. A word is a signed four-digit decimal
number, such as +3364, -1293, +0007, -0001, etc. The Simpletron is equipped with a 100-word
memory, and these words are referenced by their location numbers 00, 01, ..., 99.

Before running an SML program, we must load, or place, the program into memory. The first
instruction (or statement) of every SML program is always placed in location 00. The simulator
will start executing at this location.

Each instruction written in SML occupies one word of the Simpletron’s memory; thus,
instructions are signed four-digit decimal numbers. Assume that the sign of an SML instruction is
always plus, bur the sign of a data word may be either plus or minus. Each location in the Sim-
pletron’s memory may contain an instruction, a data value used by a program or an unused (and
hence undefined) area of memory. The first two digits of each SML instruction are the operation
code that specifies the operation to be performed. SML operation codes are shown in Fig, 8.21.

Operation code Meaning

Inputloutput operations

const int £ -3 Read a word from the keyboard into a specific location in
memory.

const int { }: Write a word from a specific location in memory to the
screen.

Load and store aperations

const int T ik Load a word from a specific location in memory into the
accumulator.

const int { 3}: Store a word from the accumulator into a specific location
iIn memory.

Arithmetic operations

const int {3, Add a word from a specific location in memory to the word
in the accumulator (leave result in accumulator),

tonst +pt . tract a word from a specific location in memory from
ik u .
the word in the accumulator (leave result in accumulator).

fig. 8.21 | Simpletron Machine Language (SML) operation codes. (Part | of 2.)

“‘-‘---_'_-——__

In Exercises 19.30-19.34, we'll “peel open” a simple hypothetical compiler that will translate state-
ments i 5 simple high-level language to the machine language you use here. Yuu’ll_wrm: programs
In thay high-level language, compile them into machine language and run that machine language on
Your computer simularor,

