Differential Geometry. Homework 7. Due April 7th. Professor: Luis Fernández

NOTE: if you need, please ask for hints.

- **1.** Consider $\mathbb{H}^{\mathbb{Z}}$ with the half plane model, i.e. $\mathbb{H}^2 = \{(x,y) \in \mathbb{R}^2 : y > 0\}$, with metric $g = \frac{1}{y^2}(dx \otimes dx + dy \otimes dy)$.
- a) Find the Christoffel symbols for the Levi-Civita connection.
- **b)** Find the equation of the geodesics.
- c) Find explicitly a parametrization of the geodesic emanating from the point (0,1) with initial velocity (u,v).
- d) Taking $(u, v) = (\cos \theta, \sin \theta)$, find a parametrization of the geodesic circle of radius r with center (0, 1).
- e) Find the circumference of this circle.
- f) Find the area of this circle.

NOTE: You are welcome to use Mathematica or any algebra program to do this exercise. You can then print the outputs and attach it to the homework.

- **2.** Consider S^2 with the metric inherited from \mathbb{R}^3 .
- a) Find explicitly a parametrization of the geodesic emanating from the north pole with initial velocity (u, v, 0) (if you prefer, you can use any other point instead of the north pole).
- b) Taking $(u, v) = (\cos \theta, \sin \theta)$, find a parametrization of the geodesic circle of radius r with center at the north pole.
- c) Find the circumference of this circle.
- d) Find the area of this circle.

NOTE: You are welcome to use Mathematica or any algebra program to do this exercise. You can then print the outputs and attach it to the homework.

- **3.** (Lee 2, p. 89, 5-11.) Let G be a Lie group and \mathfrak{g} its Lie algebra, and let g be a bi-invariant metric on G.
- a) For any $X, Y, Z \in \mathfrak{g}$, show that

$$\langle [X,Y],Z\rangle = -\langle Y,[X,Z]\rangle.$$

[Hint: Let $\gamma(t) = \operatorname{Exp}(tX)$ (here Exp denotes the Lie group exponential map, not the Riemannian one), and compute the t- derivative of $\langle Ad_{\gamma(t)}Y, Ad_{\gamma(t)}Z\rangle$ at t=0, using the facts that $Ad_{\gamma(t)}=(R_{\gamma(t)})_*(L_{\gamma(t)})_*$ and that $R_{\gamma(t)}$ is the flow of -X.]

b) Show that

$$\nabla_X Y = \frac{1}{2}[X, Y]$$

whenever X and Y are left-invariant vector fields on G.

[Hint: recall that we had the relation $2\langle \nabla_X Y, Z \rangle = X\langle Y, Z \rangle + Y\langle Z, X \rangle - Z\langle X, Y \rangle + \langle [X, Y], Z \rangle + \langle [Z, X], Y \rangle - \langle [Y, Z], X \rangle$. If X, Y, Z are left invariant, and $\langle \ , \ \rangle$ is bi-invariant, then this expression simplifies considerably, and you can easily prove that $\nabla_X X = 0$.]

- c) Show that the geodesics of g starting at the identity are exactly the one-parameter subgroups, so the Lie group exponential map coincides with the Riemannian exponential map at the identity.
- **4.** (From Lee, Riemannian Manifolds, Ex. 5-5) Let (M, g) be a Riemannian manifold. If f is a smooth function on M such that $|\operatorname{grad} f| \equiv 1$, show that the integral curves of $\operatorname{grad} f$ are geodesics.
- **5.** (DoCarmo, Chapter 3, Ex. 11) In a previous homework we defined the divergence of a vector field $X \in \mathfrak{X}(M)$ by

$$d(i_X\omega) = (\operatorname{div} X) \omega,$$

where ω is the Riemannian volume element, that is $\omega = \sqrt{\det(g_{ij})} dx^1 \wedge \cdots \wedge dx^n$.

Prove t	hat o	$\operatorname{div} X$	equals	the	${\rm trace}$	of	the	operate	or
---------	-------	------------------------	--------	-----	---------------	----	-----	---------	----

$$Y \to \nabla_Y X$$
.

(See the hint in DoCarmo, Chapter 3, Ex. 11.)

- **6.** Lee 5-1.
- 7. Lee 5-2 (similar to DoCarmo p. 78, Ex. 1).
- **8.** Lee 5-4.