Differential Geometry. Homework 5. Due March 17th. Professor: Luis Fernández

1. Prove that the set of local sections of a vector bundle *E* over a manifold *M* is a sheaf:

Given X a topological space, a sheaf \mathcal{F} on X associates to each open set $U \subset X$ a group $\mathcal{F}(U)$, called the, sections of \mathcal{F} over U, and to each pair $U \subset V$ of open sets a map $r_{V,U} : \mathcal{F}(V) \to \mathcal{F}(U)$, called the restriction map, satisfying,

1. For any triple $U \subset V \subset W$ of open sets,

$$r_{W,U} = r_{V,U} \circ r_{W,V}.$$

By virtue of this relation, we may write $\sigma|_U$ for $r_{V,U}(\sigma)$ without loss of information.

2. For any pair of open sets $U, V \subset X$ and sections $\sigma \in \mathcal{F}(U), \tau \in \mathcal{F}(V)$ such that

$$\sigma|_{U\cap V} = \tau|_{U\cap V}$$

there exists a section $\rho \in \mathcal{F}(U \cup V)$ with

 $\rho|_U = \sigma \qquad \rho|_V = \tau.$

3. If $\sigma \in \mathcal{F}(U \cup V)$ and

$$\sigma|_U = \sigma|_V = 0,$$

then $\sigma = 0$.

(In this case, to and open $U \subset M$ we associate the vector space $\Gamma(U, E)$ of local smooth sections of E over U and the restriction map is just restriction in the usual sense.)

- 2. Lee, exercise 10-7: Compute the transition function for TS^2 associated with the two local trivializations determined by stereographic coordinates.
- **3.** Lee 10-2: Let *E* be a vector bundle over a topological space *M*. Show that the projection map $\pi : E \to M$ is a homotopy equivalence. That is, there exists a map $s : M \to E$ such that $\pi \circ s$ is homotopic to the identity in *M* and $s \circ \pi$ is homotopic to the identity in *E*. (Recall that two maps $f, g : M \to M$ are homotopic if there is a continuous map $F : [0, 1] \times M \to M$ such that F(0, p) = f(p) and F(1, p) = g(p).)
- 4. Lee 10-12: Let $\pi : E \to M$ and $\pi' : E' \to M$ be two smooth rank k vector bundles over a smooth manifold M. Suppose that $\{U_{\alpha}\}_{\alpha \in A}$ is an open cover of M such that both E and E' admit smooth local trivializations over each U_{α} . Let $\{\sigma_{\alpha\beta}\}$ an $\{\sigma'_{\alpha\beta}\}$ denote the transition functions determined by the given local trivializations of E and E', respectively. Show that E and E' are smoothly isomorphic over M if and only if for each $\alpha \in A$ there exists a smooth map $f_{\alpha} : U_{\alpha} \to Gl(k, \mathbb{R})$ such that

$$\sigma'_{\alpha\beta}(p) = f_{\alpha}(p) \, \sigma_{\alpha\beta}(p) \, (f_{\beta}(p))^{-1}.$$

In particular, taking E as the trivial bundle $M \times \mathbb{R}^k$ (so the transition functions are $\sigma_{\alpha\beta}(p) = I_{\mathbb{R}^n}$), this shows that a bundle E' is trivial if for each $\alpha \in A$ there exists a smooth map $f_\alpha : U_\alpha \to Gl(k, \mathbb{R})$ such that $\sigma_{\alpha\beta}(p) = f_\alpha(p) (f_\beta(p))^{-1}$.

5. Let $U\mathbb{CP}^n = \{(P, \vec{v}) \in \mathbb{CP}^n \times \mathbb{C}^{n+1} : \vec{v} \in P\}$, where P is thought of as a complex line in \mathbb{C}^{n+1} . In coordinates this is

 $\{([p_0:p_1:\ldots:p_n], (v_0, v_2, \ldots, v_n)): (v_0, v_2, \ldots, v_n) = \lambda(p_0, p_1, \ldots, p_n), \text{ for some } \lambda \in \mathbb{C}\}.$

Let $\pi : U\mathbb{CP}^n \to \mathbb{CP}^n$ be the projection over the first factor. Let $U_i = \{[p_0 : p_1 : \ldots : p_n] \in \mathbb{CP}^n : p_i \neq 0\}, 0 \leq i \leq n$. Find trivializations $\phi_i : \pi^{-1}(U_i) \to U_i \times \mathbb{C}$. Find explicitly the transition functions $\tau_{ij} : U_i \cap U_j \to Gl(1, \mathbb{R}) \equiv \mathbb{R}$. Check that they satisfy the cocycle condition, i.e. $\tau_{ij}\tau_{jk} = \tau_{ik}$. [Note: it is easier to find ϕ_i^{-1} first.] **6.** Let $U^{\perp}\mathbb{RP}^n = \{(P, \vec{v}) \in \mathbb{RP}^n \times \mathbb{R}^{n+1} : \vec{v} \perp P\}$, where P is thought of as a real line in \mathbb{R}^{n+1} . In coordinates this is

$$\{([p_0:p_1:\ldots:p_n],(v_0,v_2,\ldots,v_n)):\sum_{k=0}^n p_k v_k=0\}.$$

Let $\pi: U^{\perp} \mathbb{RP}^n \to \mathbb{RP}^n$ be the projection over the first factor. Let $U_i = \{[p_0: p_1: \ldots: p_n] \in \mathbb{RP}^n : p_i \neq 0\}, 0 \leq i \leq n$. Find trivializations $\psi_i: \pi^{-1}(U_i) \to U_i \times \mathbb{R}^n$. Find explicitly the transition functions $\sigma_{ij}: U_i \cap U_j \to Gl(n, \mathbb{R})$. Check that they satisfy the cocycle condition, i.e. $\sigma_{ij}\sigma_{jk} = \sigma_{ik}$.

[NOTE: if you want, just do it for n = 3 and for the trivializations corresponding to U_0, U_1, U_2 . Also, it is easier to find ψ_i^{-1} first.]