
Differential Geometry. Homework 4. Due March 3rd. Professor: Luis Fernández

1. Lee, second edition, exercise 15-5 (page 397): Let M be a smooth manifold with or without boundary. Show that

the total spaces of TM and T ∗M are orientable.

2. For a hypersurface S in Rn (and we’ll see later also on a manifold), if N is a normal unit vector field along S, the

induced volume form determined by N is given by iN (dx1∧dx2∧ . . .∧dxn), where iN denotes interior multiplication.

Show that the induced volume form in Sn when we take N outward pointing is

x1 dx2 ∧ dx3 ∧ . . . ∧ dxn − x2 dx1 ∧ dx3 ∧ . . . ∧ dxn + · · ·+ (−1)n+1xn dx1 ∧ dx2 ∧ . . . ∧ dxn−1.

3. Lee, second edition, exercise 15-3 (page 397): Suppose n ≥ 1, and let α : Sn → Sn be the antipodal map: α(x) = −x.

Show that α is orientation-preserving if and only if n is odd.

[Hint: The previous exercise gives you an orientation form of Sn.]

4. Prove that the real projective space RPn is orientable if and only if n is odd.

[Hint: Use the previous exercise.]

5. Recall the classical theorem of Green: If D is a domain in R2,∮
∂D

(Pdx+Qdy) =

∫∫
D

(
∂Q

∂x
− ∂P

∂y

)
dxdy.

Show that it can be deduced from the generalized Stokes theorem:

∫
∂D

ω =

∫
D

dω.

6. (Optional - requires some annoying computations). Recall the classical theorem of Stokes: If ~X ∈ X(R3), S a surface

with smooth boundary in R3 then ∮
∂S

~X · d~r =

∫∫
S

−−→
curl( ~X) · ~N dS

where N is an outward-pointing unit normal to S.

Show that it can be deduced from the generalized Stokes theorem:

∫
∂D

ω =

∫
D

dω.

[Here you need to review some multivariable calculus: recall that dS =
∣∣∣∂φ∂t × ∂φ

∂s

∣∣∣ dt ds, where φ is a parametrization

φ(t, s) of the surface S. So you need to choose some form ω (not hard if you look at the RHS), take parametrizations

on both sides, and check that each side is equal to the corresponding side in the generalized Stokes theorem.]

7. Recall the classical divergence theorem: If ~X ∈ X(R3), V a volume with smooth boundary in R3 then∫∫
∂V

~X · ~N dS =

∫∫∫
V

div( ~X) dV,

where N is an outward-pointing unit normal to V .

Show that it can be deduced from the generalized Stokes theorem:

∫
∂D

ω =

∫
D

dω.

8. Warner, Chapter 4, Exercise 12: If α and β are closed differential forms (that is, dα = dβ = 0), prove that α ∧ β is

closed. If, in addition, β is exact (that is, β = dγ for some form γ), prove that α ∧ β is exact.



9. Lee, second edition, exercise 16-1, page 434: Let v1, . . . , vn be any n linearly independent vectors in Rn, and let P

be the n-dimensional parallelepiped they span:

P = {t1v1 + · · ·+ tnvn : 0 ≤ ti ≤ 1}.

Show that Vol(P ) = |det(v1, . . . , vn)|.

10. Lee, second edition, exercise 16-2, page 434: Let T 2 = S1 × S1 ⊂ R4 denote the 2-torus, defined as the set of points

(w, x, y, z) such that w2 + x2 = y2 + z2 = 1, with the product orientation determined by the standard orientation on

S1. Compute
∫
T 2 ω, where ω is the following 2-form on R4:

ω = xyz dw ∧ dy.

11. The natural volume form of Sn−1 ⊂ Rn is given by

αn−1 =

n∑
i=1

(−1)i+1xi dx1 ∧ . . . ∧ d̂xi ∧ . . . ∧ dxn,

Where (x1, . . . , xn) are coordinates in Rn (see exercise 2). Integrate the form αn−1 over Sn−1 to show that the

volume of Sn−1 is 
(2π)n/2

2 · 4 · · · (n− 2)
if n is even

2(2π)(n−1)/2

1 · 3 · · · (n− 2)
if n is odd

[Several hints that can be given, but I give it to you like this so you can think about it. Please do ask if you need.]

12. (Spherical coordinates in Rn) Consider the map G : Sn−1 × (0,∞) → Rn given by G(p, r) = rp. Show that

G∗(dx1 ∧ · · · ∧ dxn) = dr ∧ αn−1, where αn−1 is the form of the previous exercise.

Use this fact and the previous exercise to find the volume of the n-ball Bn = {p ∈ Rn : ‖p‖ ≤ 1}.

13. Use Stokes’ theorem and exercise 12 to find the volume of the n-ball in a different way.


