Differential Geometry. Homework 2. Due February 9th. Professor: Luis Fernández

- **1.** Since $Gl(n,\mathbb{R})$ is an open submanifold of $\mathcal{M}(n \times n,\mathbb{R}) \cong \mathbb{R}^{n^2}$, one can identify $T_A Gl(n,\mathbb{R})$ with $\mathcal{M}(n \times n,\mathbb{R})$. Consider the map det : $Gl(n, \mathbb{R}) \to \mathbb{R}$. Prove that if $X \in T_A Gl(n, \mathbb{R})$ (so X is an $n \times n$ matrix), then $\det_{*A}(X) =$ $\det(A) \text{Tr}(A^{-1}X)$ (where "Tr" is the trace).
- 2. Consider the set

$$
M = \{ (L_1, L_2) : \{0\} \subset L_1 \subset L_2 \subset \mathbb{R}^3 \}.
$$

where L_1 y L_2 are vector subspaces of \mathbb{R}^3 of dimensions 1 and 2 respectively (in other words, the inclusions in $\{0\} \subset L_1 \subset L_2 \subset \mathbb{R}^3$ are strict). Show that M can be given the structure of a manifold and find its dimension.

3. The three sphere S^3 can be written as the set of pairs $(z, w) \in \mathbb{C}^2$ such that $|z|^2 + |w|^2 = 1$. Hence we can consider the map $\pi: S^3 \subset \mathbb{R}^4 \to \mathbb{CP}^1$ given by

$$
\pi(z, w) = [z : w],
$$

where $[z:w]$ are homogeneous coordinates in \mathbb{CP}^2 , so they denote the complex line in \mathbb{C}^2 spanned by (z,w) . Prove that for any $q \in \mathbb{CP}^1$, the set $\pi^{-1}(q)$ is isomorphic to an $S^1 \subset S^3$. Then prove that $(\pi, S^3, \mathbb{CP}^1, S^1)$ is a fibre bundle. (For completeness, the definition of fiber bundle is given below.) Some remarks:

1) This generalizes to $(\pi, S^{2n+1}, \mathbb{CP}^n, S^1)$ (your proof probably works for this general case essentially with no change). These are called the Hopf fibrations.

2) Combining this with exercise 4 of homework 1, this shows that S^3 is a fiber bundle over S^2 with fiber S^1 . In particular, if we remove a point from S^2 and its corresponding fiber in S^3 , topologically we obtain a product bundle over a disk with fibre S^1 (in other words, a solid torus). Hence, S^3 minus a circle gives a solid torus. Try to visualize this. Can you do a picture? Also, try to visualize the fibration itself.

A fiber bundle over M with fiber F is a tuple (π, E, M, F) , with E, M, F manifolds and $\pi : E \to M$ smooth such that

- (i) π is onto.
- (ii) For every $p \in M$ there is a in open $U \ni p$ and diffeomorphisms $\psi : \pi^{-1}(U) \to U \times F$ (called "trivializations") such that $\pi_U \circ \psi = \pi$, where $\pi_U : U \times F \to U$ is the projection into the first factor.

4. Hodge star operator. This is from Warner, Chapter 2, Exercise 13:

Let V be an n-dimensional real inner product space, with the inner product denoted by \langle , \rangle . We extend the inner product from V to all of $\Lambda(V)$ by setting the inner product of elements which are homogeneous of different degrees equal to zero, and by setting

$$
\langle w_1 \wedge \cdots \wedge w_p, v_1 \wedge \cdots \wedge v_p \rangle = \det \langle w_i, v_j \rangle
$$

(that is, the determinant of the matrix whose ij entry is $\langle w_i, v_j \rangle$) and then extending bilinearly to all of $\Lambda^p(V)$. Prove that if $\{e_1, \ldots, e_n\}$ is an orthonormal basis of V, then the basis

$$
\{e_{1_i} \wedge \cdots \wedge e_{i_k}\}, \text{ where } 1 \le i_1 < \ldots, < i_k \le n \text{, and } k = 0, 1, \ldots, n
$$

is an orthonormal basis for $\Lambda(V)$.

Since $\Lambda^{n}(V)$ is one-dimensional, $\Lambda^{n}(V) \setminus \{0\}$ has two components. An orientation on V is a choice of a component of $\Lambda^{n}(V) \setminus \{0\}$. If V is an oriented inner product space, then there is a linear transformation

$$
\star: \Lambda(V) \to \Lambda(V),
$$

called star, which is well-defined by the requirement that for any orthonormal basis $\{e_1, \ldots, e_n\}$ of V (in particular, for any re-ordering of a given basis),

$$
\star(1) = \pm e_1 \wedge \cdots \wedge e_n \qquad \star (e_1 \wedge \cdots \wedge e_n) = \pm 1
$$

$$
\star(e_1 \wedge \cdots \wedge e_n) = \pm e_{n+1} \wedge \cdots \wedge e_n
$$

where one takes "+" if $e_1 \wedge \cdots \wedge e_n$ en lies in the component of $\Lambda^n(V) \setminus \{0\}$ determined by the orientation and "−" otherwise. Observe that

$$
\star: \Lambda^p(V) \to \Lambda^{n-p}(V).
$$

Prove that on $\Lambda^p(V)$,

$$
\star \star = (-1)^{p(n-p)}.
$$

Also prove that for arbitrary $v, w \in \Lambda^p(V)$, their inner product is given by

$$
\langle v, w \rangle = \star (w \wedge \star v) = \star (v \wedge \star w).
$$

5. Prove that the map $\pi : \mathbb{R}^{n+1} \setminus \{0\} \to \mathbb{R}\mathbb{P}^n$ given by $\pi(x_1, \ldots, x_n) = [x_1 : \cdots : x_n]$ is a submersion, and the kernel of π_{*p} is the subspace of $T_p \mathbb{R}^{n+1}$ generated by p.

[HINT: you can factor it through $Sⁿ$, that is, write it as a map from $\mathbb{R}^{n+1} \setminus \{0\}$ to $Sⁿ$ composed with the projection from S^n to \mathbb{RP}^n (which is a local diffeomorphism).

6. (This is in Lee 1, ex. 21-14) The Plücker embedding: Consider the map $\rho: Gr(k, \mathbb{R}^n) \to \mathbb{P}(\Lambda^k \mathbb{R}^n)$ given by

$$
\rho(P) = [v_1 \wedge \cdots v_k] \text{ if } S = \text{span}\{v_1, \ldots, v_k\}.
$$

Prove that ρ is well defined and is a smooth embedding whose image is the set of equivalence classes of nonzero decomposable elements of $\Lambda^k(\mathbb{R}^n)$.

[Hint: Let $P \in Gr(k, \mathbb{R}^n)$, and suppose that v_1, \ldots, v_k span P. Consider a curve $v(t)$ in \mathbb{R}^n with $v(0) = v_1$ and $v'(0) = X \notin P$. Then the curve span $\{v(t), v_2, \ldots, v_k\}$ is a nonconstant curve in $Gr(k, \mathbb{R}^n)$ and determines a nonzero element of $T_P Gr(k, \mathbb{R}^n)$. You only need to prove that the derivative with respect to t of the curve in $\mathbb{P}(\Lambda^k \mathbb{R}^n)$ given by $c(t) := \rho(\text{span}(\{v(t), v_2, v_k)\})$ is not zero. To do this you can write $c(t)$ as $v(t) \wedge v_2 \wedge v_k$ composed with the map π from the previous exercise.