
Differential Geometry. Homework 2. Due February 9th. Professor: Luis Fernández

1. Since Gl(n,R) is an open submanifold of M(n × n,R) ∼= Rn2

, one can identify TAGl(n,R) with M(n × n,R).

Consider the map det : Gl(n,R) → R. Prove that if X ∈ TAGl(n,R) (so X is an n × n matrix), then det∗A(X) =

det(A) Tr(A−1X) (where “Tr” is the trace).

2. Consider the set

M = {(L1, L2) : {0} ⊂ L1 ⊂ L2 ⊂ R3}.

where L1 y L2 are vector subspaces of R3 of dimensions 1 and 2 respectively (in other words, the inclusions in

{0} ⊂ L1 ⊂ L2 ⊂ R3} are strict). Show that M can be given the structure of a manifold and find its dimension.

3. The three sphere S3 can be written as the set of pairs (z, w) ∈ C2 such that |z|2 + |w|2 = 1. Hence we can consider

the map π : S3 ⊂ R4 → CP1 given by

π(z, w) = [z : w],

where [z : w] are homogeneous coordinates in CP2, so they denote the complex line in C2 spanned by (z, w).

Prove that for any q ∈ CP1, the set π−1(q) is isomorphic to an S1 ⊂ S3. Then prove that (π, S3,CP1, S1) is a fibre

bundle. (For completeness, the definition of fiber bundle is given below.) Some remarks:

1) This generalizes to (π, S2n+1,CPn, S1) (your proof probably works for this general case essentially with no change).

These are called the Hopf fibrations.

2) Combining this with exercise 4 of homework 1, this shows that S3 is a fiber bundle over S2 with fiber S1. In

particular, if we remove a point from S2 and its corresponding fiber in S3, topologically we obtain a product bundle

over a disk with fibre S1 (in other words, a solid torus). Hence, S3 minus a circle gives a solid torus. Try to visualize

this. Can you do a picture? Also, try to visualize the fibration itself.

A fiber bundle over M with fiber F is a tuple (π,E,M,F ), with E, M , F manifolds and π : E → M smooth such

that

(i) π is onto.

(ii) For every p ∈M there is a in open U 3 p and diffeomorphisms ψ : π−1(U)→ U×F (called “trivializations”)

such that πU ◦ ψ = π, where πU : U × F → U is the projection into the first factor.

4. Hodge star operator. This is from Warner, Chapter 2, Exercise 13:

Let V be an n-dimensional real inner product space, with the inner product denoted by 〈 , 〉. We extend the inner

product from V to all of Λ(V ) by setting the inner product of elements which are homogeneous of different degrees

equal to zero, and by setting

〈w1 ∧ · · · ∧ wp, v1 ∧ · · · ∧ vp〉 = det〈wi, vj〉

(that is, the determinant of the matrix whose ij entry is 〈wi, vj〉) and then extending bilinearly to all of Λp(V ).

Prove that if {e1, . . . , en} is an orthonormal basis of V , then the basis

{e1i ∧ · · · ∧ eik}, where 1 ≤ i1 < . . . , < ik ≤ n, and k = 0, 1, . . . , n

is an orthonormal basis for Λ(V ).

Since Λn(V ) is one-dimensional, Λn(V ) \ {0} has two components. An orientation on V is a choice of a component

of Λn(V ) \ {0}. If V is an oriented inner product space, then there is a linear transformation

? : Λ(V )→ Λ(V ),



called star, which is well-defined by the requirement that for any orthonormal basis {e1, . . . , en} of V (in particular,

for any re-ordering of a given basis),

?(1) = ±e1 ∧ · · · ∧ en ? (e1 ∧ · · · ∧ en) = ±1

?(e1 ∧ · · · ∧ ep) = ±ep+1 ∧ · · · ∧ en

where one takes “+” if e1 ∧ · · · ∧ en en lies in the component of Λn(V ) \ {0} determined by the orientation and “−”

otherwise. Observe that

? : Λp(V )→ Λn−p(V ).

Prove that on Λp(V ),

?? = (−1)p(n−p).

Also prove that for arbitrary v, w ∈ Λp(V ), their inner product is given by

〈v, w〉 = ?(w ∧ ?v〉 = ?(v ∧ ?w).

5. Prove that the map π : Rn+1 \ {0} → RPn given by π(x1, . . . , xn) = [x1 : · · · : xn] is a submersion, and the kernel of

π∗p is the subspace of TpRn+1 generated by p.

[HINT: you can factor it through Sn, that is, write it as a map from Rn+1 \ {0} to Sn composed with the projection

from Sn to RPn (which is a local diffeomorphism).

6. (This is in Lee 1, ex. 21-14) The Plücker embedding: Consider the map ρ : Gr(k,Rn)→ P(ΛkRn) given by

ρ(P ) = [v1 ∧ · · · vk] if S = span{v1, . . . , vk}.

Prove that ρ is well defined and is a smooth embedding whose image is the set of equivalence classes of nonzero

decomposable elements of Λk(Rn).

[Hint: Let P ∈ Gr(k,Rn), and suppose that v1, . . . , vk span P . Consider a curve v(t) in Rn with v(0) = v1 and

v′(0) = X 6∈ P . Then the curve span{v(t), v2, . . . , vk} is a nonconstant curve in Gr(k,Rn) and determines a nonzero

element of TPGr(k,Rn). You only need to prove that the derivative with respect to t of the curve in P(ΛkRn) given

by c(t) := ρ( span({v(t), v2, vk) } is not zero. To do this you can write c(t) as v(t) ∧ v2 ∧ vk composed with the map

π from the previous exercise.]


