Differential Geometry. Homework 1. Due February 4th. Professor: Luis Fernández

- **1.** Let (\mathbb{R}^2, ϕ) be the trivial chart of \mathbb{R}^2 (i.e. $\phi(x, y) = (x, y)$). Let (V, ψ) be the chart in \mathbb{R}^2 defined by $V = \{(x, y) \in \mathbb{R}^2 : x > 0\}$ and $\psi(x, y) = (r, \theta)$ (i.e the point (x, y) in polar coordinates, so $(x, y) = (r \cos \theta, r \sin \theta)$). Find $dx \wedge dy$ in terms of $dr \wedge d\theta$.
- **2.** Let $\omega \in \Lambda^2(\mathbb{R}^3)$ be defined by $\omega_p(X_p, Y_p) = p \cdot (X_p \times Y_p)$ for any vectors $X_p, Y_p \in T_p \mathbb{R}^3$, where '×' denotes the usual cross product of \mathbb{R}^3 . Find $d\omega$.
- **3.** Let $F : \mathbb{RP}^1 \to S^1$ be defined by

$$F([x:y]) = \frac{1}{x^2 + y^2} \left(2xy, x^2 - y^2 \right)$$

(Recall that $[x : y] \in \mathbb{RP}^1$ denotes the straight line in \mathbb{R}^2 passing through (0,0) and (x,y).) Show that F is a diffeomorphism.

Find dF in local coordinates at a point of the form [x:1]. (You have to take coordinate charts for \mathbb{RP}^1 and S^1 and express dF in terms of these coordinates.)

4. Let $F : \mathbb{CP}^1 \to S^2$ be defined by

$$F([z:w]) = \frac{1}{|z|^2 + |w|^2} \left(2 \operatorname{Re}(z\bar{w}), 2 \operatorname{Im}(z\bar{w}), |w|^2 - |z|^2 \right)$$

(Recall that $[z:w] \in \mathbb{CP}^1$ denotes the complex subspace of \mathbb{C}^2 given by $\{\lambda(z,w): \lambda \in \mathbb{C}\}$.) Show that F is a diffeomorphism.

Now consider the following charts:

- (U_2, φ_2) of \mathbb{CP}^1 , where $U_2 = \{[u + iv : 1] : u, v \in \mathbb{R}\} \subset \mathbb{CP}^2$ and $\phi_2([u + iv : 1]) = (u, v)$.
- (V_N, p_N) of S^2 , where $V_N = S^2 \setminus \{(0, 0, 1)\}$ and $p_N(x, y, z) = (x_1, x_2)$ with $x_1 = \frac{x}{1-z}$, $x_2 = \frac{y}{1-z}$.
 - Then $\left\{\frac{\partial}{\partial u}, \frac{\partial}{\partial v}\right\}$ is a basis of $T_{[u+iv:1]}\mathbb{CP}^2$ and $\left\{\frac{\partial}{\partial x_1}, \frac{\partial}{\partial x_2}\right\}$ is a basis of $T_{(x,y,z)}S^2$.

In these bases, find the matrix of dF at a point [u + iv : 1]. (You can skip finding the actual derivatives because it is long, but indicate which map you have to differentiate and with respect to which variables.)

5. The matrix group U(n) is defined as

$$U(n) = \{ A \in Gl(n, \mathbb{C}) : A^*A = I \},\$$

where $A^* := \overline{A}^t$. Prove that U(n) is a submanifold of $Gl(n, \mathbb{C})$.

- 6. Let f : M → Rⁿ be a C[∞] function, where M is a compact manifold of dimension n. Show that f must have a singular point (i.e. a point where the rank of df is less than n).
 [HINT: consider ||f||² : M → R.]
- 7. An element of ΛV is called *homogeneous* if it is in $\Lambda^k V$ for some k (so for example, $dx \wedge dy + dx$ is not homogeneous, whereas $dx \wedge dy + dx \wedge dz$ is). It is called *decomposable* if it can be written as $v_1 \wedge v_2 \wedge \cdots \wedge v_k$ for some vectors $v_i \in V$. Show that
 - a) If dim $V \leq 3$, then every homogeneous element is decomposable.
 - b) If dim V > 3, give an example of an indecomposable homogeneous element.
 - c) Let $\alpha \in \Lambda^k V$. Is $\alpha \wedge \alpha = 0$?

8. Recall that the flow of a vector field X on a manifold M is the map σ from a subset of $\mathbb{R} \times M$ to M, such that $\frac{d\sigma_t(p)}{dt} = X_{\sigma_t(p)}$. The Lie derivative with respect to X of a differential form $\alpha \in A(M)$ at a point p is defined as

$$L_X \alpha = \lim_{t \to 0} \frac{(\sigma_t)^* \alpha_{\sigma_t(p)} - \alpha_p}{t}$$

Prove:

a) If $f \in A^0(M)$, then $L_X f = X f$. Likewise, the Lie derivative with respect to X of a vector field $X \in \mathfrak{X}(M)$ is given by

$$L_X Y = \lim_{t \to 0} \frac{(\sigma_{-t})_* Y_{\sigma_t(p)} - Y_p}{t}.$$

b) Prove that $L_X Y = [X, Y]$. [HINT: Take $f \in C^{\infty}(M)$. Then you want to show that

$$\frac{d}{dt}|_{t=0}(\sigma_{-t})_*Y_{\sigma_f(p)}(f) = X_p(Yf) - Y_p(Xf).$$

This amounts to unraveling all the definitions of push forward, derivative, etc. You can check Warner, Chapter 2, if you get stuck.]

9. Let $X, Y \in \mathfrak{X}(M)$ with corresponding 1-parameter groups given by θ_t and η_s Let $p \in M$ and let

$$\beta_p(t) = \eta_{-\sqrt{t}} \circ \theta_{-\sqrt{t}} \circ \eta_{\sqrt{t}} \circ \theta_{\sqrt{t}}(p).$$

For $f \in C^{\infty}(M)$, show that

$$[X,Y]_p(f) = \frac{d}{dt|_0} f(\beta_p(t)).$$

[HINT: do a Taylor expansion up to order 2 of the C^{∞} function $\gamma(t_1, s_1, t_2, s_2) = \eta_{s_2} \circ \theta_{t_2} \circ \eta_{s_1} \circ \theta_{t_1}(p)$.] (NOTE: this is from Warner, exercise 6 of chapter 2.)

10. Let $\xi \in V$. Prove that the composition

$$\Lambda^p V \xrightarrow{\wedge \xi} \Lambda^{p+1} V \xrightarrow{\wedge \xi} \Lambda^{p+2}$$

is an exact sequence (that is, the image of the first map is the kernel of the second).

11. Cartan's Lemma: Let $\omega_1, \ldots, \omega_k$ be 1-forms on M^n which are linearly independent pointwise. Let $\theta_1, \ldots, \theta_k$ be 1-forms on M such that

$$\sum_{i=1}^{k} \theta_i \wedge \omega_i = 0.$$

Prove that there exist C^{∞} functions A_{ij} on M with $A_{ij} = A_{ji}$ such that

$$\theta_i = \sum_{j=1}^k A_{ij} \omega_j.$$

[Hint: Extend the ω s to a basis (locally).]