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Jordan curve theorem

We think of a regular C2 simply closed path in the plane as a C2 imbedding of the circle
ω : S1 → R2.

Theorem. Given the C2 imbedding ω of S1 into R2, the complement of the image R2 \ ω(S1)
has precisely two components, one of which is bounded and one unbounded.

Exercise 1. Prove that R2 has at most two components:
(a) Let S1 have its usual orientation, let v be the unit velocity vector field along ω given

by the orientation, let ι denote the rotation of R2 by π/2 radians, and let n be the unit vector
field along ω given by

n = ιv,

that is, n is the unit normal vector field along ω consistent with the imbedding of ω in R2. Define

F : S1 × R→ R2

by
F (t, ε) = ω(t) + εn(t),

where (t, ε) ∈ S1 × R. Show that F has maximal rank on S1 × {0}.
(b) Show that there exists ε > 0 such that F |S1 × (−εo, εo) is a diffeomorphism of S1 ×

(−εo, εo) onto its image, an open neighborhood of ω(S1) in R2.
(c) Conclude that R2 \ ω(S1) has at most two components.

Exercise 2. Prove that R2 \ ω(S1) has at least two components: the method is to construct a
function on R2 \ω(S1) such that the function is constant on each components of R2 \ω(S1), and
that the function assumes at least two values.

(a) Introduce polar coordinates into R2 centered at any point p = (a, b) in R2.
(b) Show that if there exists a path γ : (α, β) → R2 \ {p} ∈ C2, then there exist C2

functions r : (α, β) → (0,∞) and σ : (α, β) → R such that

γ(τ) = p + r(τ)eiσ(τ).

Check as to what extent the function σ(τ) is unique. Show, that when σ ∈ C1, the function
σ′(τ) is uniquely defined, and is independent of the particular choice of σ(τ).
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(c) Parametrize S1 by
t = eiτ , τ ∈ R,

and let
γ(τ) = ω(eiτ ).

For any p ∈ R2 \ ω(S1), let σp(τ) be the angle function as defined in (b) above, and define the
winding number nω(p) of ω with respect to p, by

nω(p) =
σp(2π)− σp(0)

2π
.

Show that (i) nω(p) is an integer; (ii) nω(p) is independent of the particular choice of the angle
function σp; (iii) nω(p) is a Ck function of p on R2 \ω(S1); and (iv) if k ≥ 1, then nω changes its
values by +1 or −1 when p crosses ω at any of its image points in R2.

(d) Finish the proof of the Jordan curve theorem.

Whitney’s theorem

Exercise 3. Let n = 2; so we are discussing paths and curves in the plane. Let ι denote the
rotation of R2 by π/2 radians. Then we may define the curvature with sign, namely,

κ =
N·ι(ω′/|ω′|)

|ω′|2 =
ω′′·ιω′
|ω′|3 .

(a) Show that κ, here, is defined along the oriented curve determined by ω.
(b) Let s denote arc length along ω, that is, reparametrize ω with respect to arc length.

Let t denote the unit velocity vector field along ω, that is,

t =
ω′

|ω′| ,

and n the positively oriented unit normal vector field along ω, that is,

n = ιt.

Prove the Frenet formula:
dt
ds

= κn,
dn
ds

= −κt.

Exercise 4. Write the Frenet formulae as a matrix ordinary differential equation, namely,

d

ds

(
t
n

)
=

(
0 κ(s)

−κ(s) 0

)(
t
n

)
.

(a) Show that if we start with s the arc length and κ(s) the curvature function then there
exists a function θ(s) such that

(
t
n

)
(s) =

(
cos θ(s) sin θ(s)
− sin θ(s) cos θ(s)

)(
e1

e2

)
.

(b) Determine to what extent is the function θ(s) is uniquely determined by the curvature
function κ(s).

(c) Since s is arc length, t(s) is the velocity vector field of the parametrization of the
oriented curve, determined by ω, with respect to arc length. Therefore determine the full extent
to which an oriented curve is uniquely determined by its curvature as a function of arc length
along the curve.
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Definition. A path ω : R → R2 is closed if ω is periodic. Given the path ω : R → R2,
we say that ω is simply closed if there exists a real number ` 6= 0 such that

ω(t1) = ω(t2) ⇐⇒ t2 − t1
`

∈ Z,

where Z denotes the integers.
Given any closed path ω : R→ R2 of period ` > 0, we define its index of rotation rotω by

rotω =
1
2π

∫ `

0
κ(t)|ω′(t)| dt =

1
2π

∫ so

0
κ ds,

where

so =
∫ `

0
|ω′(t)| dt

is the length of the closed curve.

Exercise 5. Show that rotω is an integer.

Definition. let ω : R → R2 and γ : R → R2 be two regular `–periodic C2 paths in the
plane. We say that

Ω : R× [0, 1] → R2 ∈ C2

is a deformation of ω to γ if

Ω|R× {0} = ω, Ω|R× {1} = γ,

and if for each t ∈ [0, 1], we have Ω|R× {t} is a regular `–periodic C2 path in the plane.

Exercise 6.
(a) Show that “deformation of ω into γ” is an equivalence relation.
(b) Show that the rotation number of a regular `–periodic C2 path in the plane is actually

defined on the equivalence class (relative to the “deformation” relation) of the path.

Exercise 7. Show that, for any given ρ > 0, integer k 6= 0, the `–periodic path

γk;ρ,`(t) =
ρ

2πk

{
cos

2πkt

`
i + sin

2πkt

`
j
}

has length ρ, and rotation index k.

Exercise 8. Prove

Theorem: Any two regular `–periodic C2 paths in the plane, possessing the same nonzero rota-
tion number, may be deformed one into the other.

Here is a breakdown of the steps:
(a) Characterize the velocity vector field v(t) of an `–periodic closed curve by

∫ `

0
v(t) dt = 0.
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(b) Given any positive constant α, show that any regular `–periodic C2 path may be
deformed to an `–periodic path whose velocity vector has any constant length α.

(c) Therefore, assume the two paths ω1, ω2 have nonzero rotation index k, period `, and
velocity vector of constant length 1; and let κ1, κ2 denote the curvature functions of ω1, ω2,
respectively. Deform κ1(t) to κ2(t) by

κε(t) = (1− ε)κ1(t) + εκ2(t), ε ∈ [0, 1].

(d) Integrate the deformation of curvature functions (in (c)), using Exercise 4(c), to
construct the deformations of the paths from the deformation of the curvature functions.

Surfaces in Euclidean space

Exercise 9. Show that every compact surface in R3 has a point of strictly positive curvature.

Exercise 10. Show that there exists a sequence of compact surfaces Sn in R3, with induced
Riemannian metric such that

A(Sn) → 0 as n → +∞,

but the collection of surfaces is not contained in any compact set.

Riemannian volume

Exercise 11. Let M be a Riemannian manifold, ξ a C1 vector field on M , Φt : M → M the
1–parameter flow determined by ξ. Prove

d

dt

∣∣∣∣
t=0

V (Φt(D)) =
∫∫

D
div ξ dV,

for any relatively compact D in M .

Exercise 12. Let Mn be a Riemannian manifold, x : U → Rn a chart on M , G = (gij) the
positive definite symmetric matrix representing the Riemannian metric in the chart.

(a) Show that
dV =

√
detG dx1 · · · dxn

is independent of the chart x.
(b) Let {e1, . . . , en} denote an orthonormal moving frame on U , with dual co-frame

{ω1, . . . , ωn}, and skew-symmetric matrix of connection 1–forms (ωj
k). Show that

ω1 ∧ · · ·ωn = ±
√

detG dx1 ∧ · · · ∧ dxn,

the ± depending on whether the frame has the same, or opposite, orientation as the chart.

Exercise 13. Let ω be the (n− 1)–form on Rn given by

ω =
n∑

j=1

(−1)j−1xj dx1 ∧ · · · ∧ d̂xj ∧ · · · ∧ dxn.

(a) Show that ω is invariant under the orthogonal group of Rn.
(b) Show that ω|Sn−1(r) is ± the (n− 1)–dimensional volume form on Sn−1(r) for every

r > 0.
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The Levi–Civita connection

Exercise 14. Continue with the previous exercise. Let {E1, . . . , En} denote another orthonor-
mal moving frame on U , with dual co-frame {θ1, . . . , θn}, and skew-symmetric matrix of connec-
tion 1–forms (θj

k). Give a formula relating the connection matrices (ωj
k) and (θj

k).

Exercise 15. Let M be a Riemannian manifold. First show that, given any point p ∈ M , there
exists a chart about p such that the Christoffel symbols all vanish at p, that is,

Γjk
`(p) = 0, for all j, k, `.

Then show that one can also assume that

gjk(p) = δjk (the Kronecker delta),

that is, the natural basis at p of Mp is orthonormal.
hint: Given a chart x : U → Rn, p ∈ U , with Christoffel symbols Γjk

` symmetric in j, k,
define

y`(q) = x`(q)− x`(p) +
1
2

∑

j,k

Γjk
`(x(p))(xj(q)− xj(p))(xk(q)− xk(p)).

Check that there exists a domain V in U , such that (y|V ) : V → Rn is a chart for which the
Christoffel symbols vanish at p.

Riemannian submanifolds

Exercise 16.
(a) Let M be a submanifold of M . We say that M is totally geodesic in M , if for any

geodesic γ in M , for which there exists t0 such that γ(t0) ∈ M and γ′(t0) ∈ Mγ(t0), there exists
an ε > 0 such that γ|(t0−ε, t0+ε) is completely contained in M . Show that M is totally geodesic
if and only if the second fundamental form B vanishes identically on M .

(b) Show that if M is a Riemannian manifold possessing an isometry φ : M → M , then
any connected component of the set of all points left fixed by φ is totally geodesic.

Exercise 17. Let M be a codimension 1 submanifold of the Riemannian manifold M , p ∈ M .
Let ξ be a unit vector orthogonal to Mp. Let M̃p = exp Mp, where exp denotes (for the moment)
the exponential map in M . Show that M̃p is a smooth submanifold in some neighborhood of p,
and has vanishing second fundamental form at p. (One might refer to M̃p as totally geodesic at
p.) Show that if the second fundamental form of M , with respect to ξ, is positive definite then
p has a neighborhood U in M in which

M ∩ M̃p ∩ U = {p}.
Thus when the second fundamental form is definite, one might say that “M lies, locally, on
one side of Mp” — a sort of local convexity. (note: Understanding this exercise is the key to
Exercise 4 in the first problem set.)

Definition. Let Mm−1 ⊂ M
m be an immersed submanifold. We say a point p ∈ M is

umbilic if the second fundamental form of M at p is a scalar multiple of the first fundamental
form.
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Exercise 18. Let M = Rm. Show that if every point of M is umbilic, then M is a piece of a
sphere in Rm. In particular, if M is compact and everywhere umbilic in Rm then M is a sphere
in Rm.

Gradients and Hessians

Exercise 19. Let f : M → R be a differentiable function on the Riemannian manifold M . The
gradient vector field of f on M , grad f , is defined by

grad f = θ−1(df),

where df denotes the differential of f , and θ : TM → TM∗ denotes the natural bundle isomor-
phism given by

θ(ξ)(η) = 〈ξ, η〉,
for all p ∈ M and ξ, η ∈ Mp.

Assume that
|grad f | = 1

on all of M . Show that the integral curves of grad f are geodesics.

Exercise 20. Show that for any Riemannian manifold M the distance function may be given
analytically by

d(x, y) = sup {|ψ(x)− ψ(y)| : ψ ∈ C∞, |gradψ| ≤ 1},
that is, where ψ varies over smooth functions for which |gradψ| ≤ 1 on all of M .

hint: One checks that for such ψ one has

|ψ(x)− ψ(y)| ≤ d(x, y).

So the issue is to show that among these functions we may choose ψ so that |ψ(x) − ψ(y)| is
arbitrarily close to d(x, y). To this end, given x and y, consider the function

ψ(z) = min {d(z, x), d(y, x)}.

|ψ(x)− ψ(y)| = d(x, y).

Check that ψ is uniformly Lipschitz, that

|ψ(z)− ψ(w)| ≤ d(z, w)

for all z, w ∈ M . Now one requires an argument that ψ may be approximated by C∞ functions
ψn for which |gradψn| ≤ 1.

Definition. Given a function f on a Riemannian manifold M , its first covariant derivative
is, simply, its differential df .

The Hessian of f , Hess f , is defined to be the second covariant derivative of f , that is,
∇df . So

(Hess f)(ξ, η) = ξ(df(Y ))− (df)(∇ξY ),

where Y is any extension of η.
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Exercise 21. Prove
(a) Hess f is symmetric in ξ, η;
(b) the (1, 1)–tensor field associated with the (0, 2)–field Hess f is given by

ξ 7→ ∇ξgrad f ;

(c) a function with positive definite Hessian has no local maxima.

Exercise 22. Let p ∈ M such that f(p) = α, and grad f does not vanish at p. Then the
level surface of f through p, f−1[α], restricted to a sufficiently small neighborhood of p, is an
embedded (n− 1)–manifold. Show that the Hessian of f at p is given by

(Hess f)|(f−1[α])p
= B−grad f|p ,

the second fundamental form of f−1[α] associated to the normal vector −grad f at p.

Gauss–Bonnet and Poincaré–Hopf

Exercise 23. Consider an oriented Riemannian 2–manifold M with a local positively oriented
frame field {e1, e2} on a neighborhood U diffeomorphic to a subset of R2. Let X denote a vector
field on M with isolated zero at p ∈ U , and let x1 = X/|X| be the associated unit vector field on
U \ {p}. Let x2 denote the vector field on U \ {p} obtained by rotating x1 by π/2 radians. Along
any circle C (in local or polar coordinates) about p, one can write

x1 = (cos θ)e1 + (sin θ)e2, x2 = −(sin θ)e1 + (cos θ)e2.

Show that if ωj
k denotes the connection 1–form of the frame field {e1, e2} on U , and τj

k denotes
the connection 1–form of the frame field {x1, x2} on U \ {p}, then

τ1
2 = dθ + ω1

2.

Define
index X at p :=

1
2π

∫

C
dθ.

Exercise 24.
(a) Given an orientable compact Riemannian 2–manifold M with smooth vector field X

whose set of zeros is the subset {p1, . . . , p`} of M . Show that

∫

M
K dA = 2π

∑̀

j=1

(index X at pj).

This recaptures the Poincaré–Hopf theorem that the sum of the indices of the singularities of a
vector field on a compact differentiable manifold is equal to its Euler characteristic.

Geodesics

Exercise 25. Let γ : [0, 1] → M be a piecewise smooth path. Show that given ε > 0, there
exists δ > 0 such that for any t ∈ [0, 1], any two points in the disk B(γ(t) : δ) are connected by
a unique minimizing geodesic of length < ε.
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Exercise 26. Assume that M is Riemannian complete and noncompact. Then for every p ∈ M
there exists a ray emanating from p, that is, there exists a geodesic γ : [0,+∞) → M , |γ′| = 1,
such that

d(γ(t), γ(s)) = |t− s| for all t, s ≥ 0.

Exercise 27. Show that if M is a compact Riemannian manifold, then every nontrivial free
homotopy class has a path of (positive) shortest length in the class, and this path is a closed
geodesic.

Exercise 28. Assume γ : [0, β] → M , p = γ(0), ξ = γ′(0), is a unit speed geodesic. Show that
points along γ, conjugate to p along γ, are isolated.

Exercise 29. Let p = γ(0), ξ = γ′(0) ∈ Sp. For ε in (0, 1), let Cε(ξ) denote the neighborhood of
ξ ∈ Sp given by

Cε(ξ) = {η ∈ Sp : 〈ξ, η〉 > 1− ε};
and for any ε in (0, 1) and r > 0 let

Cε,r(ξ) = {tη ∈ Mp : t ∈ [0, r), η ∈ Cε(ξ)},

and
Cε,r(ξ) = exp Cε,r(ξ).

Prove the following

Theorem. Assume γ : [0, β] → M , p = γ(0), ξ = γ′(0), is a unit speed geodesic such that γ|(0, β]
is one-to-one with no points conjugate to p along γ. Then there exist ε in (0, 1), r > β, such that
Cε,r(ξ) ⊆ TM , the domain of the exponential map. Furthermore, there exists sufficiently small
ε > 0 such that, if ω is a path from p to γ(β) with image completely contained in Cε,r(ξ) then

`(ω) ≥ β,

with equality only if the image of ω is the same as that of γ.

Exercise 30. Let M be a Riemannian manifold, p a point in M , and r the distance function on
M based at p, that is, r is given by

r(x) = d(p, x).

(a) Show, for r > 0 sufficiently small, that r ∈ C∞ and |grad r| = 1.
(b) Show, with β > 0 sufficiently small as in (a), γ : [0, β] → M a unit speed geodesic

emanating from p, that for any Jacobi field Y along γ, vanishing at p and orthogonal to γ along
γ, its index form I is given by

I(Y, Y ) = 〈∇tY, Y 〉(β) = B−grad r|γ(β)
(Y (β), Y (β)) = Hess r(Y (β), Y (β))

where B denotes the second fundamental form of the level surface r−1[β].
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Riemann normal coordinates

Exercise 31. Given p ∈ M , ξ, η, ζ ∈ Mp, |ξ| = 1, γ(t) = exp tξ, and Y, Z Jacobi fields along γ
determined by

Y (0) = 0, (∇tY )(0) = η,

Z(0) = 0, (∇tZ)(0) = ζ;

then the Taylor expansion of 〈Y, Z〉(t) about t = 0 is given by

〈Y, Z〉(t) = t2〈η, ζ〉 − (t4/3)〈R(ξ, η)ξ, ζ〉+ 0(t5).

hint: Direct calculation. The idea is that Taylor’s expansion, in a neighborhood of t = 0, for a
vector field Y (t) along the geodesic γξ(t) is given by

Y (t) = τt

{
Y (0) + t∇tY (0) + (t2/2)∇t

2Y (0) + (t3/6)∇t
3Y (0)

}
+ O(t4),

where τt denotes parallel translation along γξ from p to γt(ξ). Now one uses the hypotheses of
the theorem to calculate the derivatives of Y (t) at t = 0. In the inner product, one uses the fact
that the parallel translation is an isometry.

Exercise 32. Assume dimM = 2, p ∈ M , L(r) the length of S(p; r), and A(r) the area of
B(p; r), K(p) the Gauss curvature of M at p. Show that

K(p) = lim
r↓0

2πr − L(r)
πr3/3

= lim
r↓0

πr2 −A(r)
πr4/12

.

hint: Apply previous exercise to geodesic polar coordinates about p.

Exercise 33. Fix p ∈ M and U an open set about, and starlike with respect to, 0 ∈ Mp for
which exp |U is a diffeomorphism of U onto its image U := exp U, an open set in M about p.

Then every choice of orthonormal basis {e1, . . . , en} of Mp determines a chart n : U → Rn,
referred to as Riemann normal coordinates, given by

nj(q) = 〈(exp |U)−1(q), ej〉

for q ∈ U , that is, for v =
∑

j vjej ∈ U we have

nj(exp v) = vj .

In this chart we have for γ(t) = exp tv,

γj(t) := (nj◦γ)(t) = tvj , γ′(t) =
∑

j

vj∂j|γ(t).

(a) Let Yj be the Jacobi field along γ determined by the initial conditions

Yj(0) = 0, (∇tYj)(0) = ej .

prove that
∂j| exp tv = (expp)∗|tv =tvej = t−1Yj(t)

for tv ∈ U.
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(b) Prove that, for v ∈ U,

gjk(exp v) = δjk − (1/3)〈R(v, ej)v, ek〉+ O(|v|3),

and
det(gjk(exp v)) = 1− (1/3)Ric (v, v) + O(|v|3),

as v → 0.

Exercise 34. Given a Riemannian manifold M , p ∈ M . Show that given any ε > 0 there exists
δ > 0 such that

d(exp ξ, exp η)
|ξ − η| = 1±O(ε2)

for all ξ, η ∈ B(p; δ).

Hyperbolic space

Exercise 35. Given the unit n–disk Bn with the Riemannian metric

ds2 =
4|dx|2

{1− |x|2}2
.

Use orthonormal moving frames to show that the sectional curvature is identically equal to −1.
(hint: Use the moving frame defined by

EA =
1− |x|2

2
eA, ωA =

2
1− |x|2 dxA,

where {e1, . . . , en} is the standard basis of Rn.)

The Myers–Steenrod Theorem

Exercise 36. Let M be a Riemannian manifold, and ϕ : M → M an onto map (not assumed
to be continuous) such that d(ϕ(p), ϕ(q)) = d(p, q) for all p, q ∈ M . Then ϕ is an isometry, that
is, ϕ is a diffeomorphism preserving the Riemannian metric.

sketch:
(a) Show that ϕ is a homeomorphism.
(b) Fix p and ϕ(p) in M . Let δ1 denote the injectivity radius of M at p. Show that we

have a well defined map F : B(p; δ1) → B(ϕ(p); δ1) defined by

F (ξ) = (exp |B(ϕ(p); δ1))−1◦ϕ◦exp ξ.

(c) Show that for ξ ∈ B(p; δ1), s ∈ [0, 1] one has

F (sξ) = sF (ξ).(1)

Then show that F may be extended to all of Mp so that it satisfies (1) and

|F (ξ)| = |ξ|(2)

for all ξ ∈ Mp, s ≥ 0.
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(d) Next, use Exercise 13 to show that, given any ε > 0, there exists sufficiently small
δ > 0 so that

|F (ξ)− F (η)| = |ξ − η|{1±O(ε2)}
for all ξ, η ∈ B(p; δ).

(e) Next, show |F (ξ)− F (η)| = |ξ − η| for all ξ, η ∈ Mp.
(f) Let |ξ| = |η| = 1. Use the formula

|ξ − η| = 2 sin
1
2
](ξ, η)

and (2) to show that

sin
1
2
](F (ξ), F (η)) = sin

1
2
](ξ, η),

which therefore implies
cos ](F (ξ), F (η)) = cos ](ξ, η),

which implies F preserves the inner product.
(g) Use the expansion of vectors with respect to an orthonormal basis of an inner product

space to show that F is additive, and therefore, linear. Then show that F = ϕ∗|p, which implies
the lemma.

Hopf fibration of S3

Exercise 37. We let 1, i, j, k denote the standard basis of R4. Beyond the vector space structure
of R4 we define a multiplication of elements of R4, where the multiplication of the natural basis
is given by

1i = i = i1, 1j = j = j1, 1k = k = k1, i2 = j2 = k2 = −1,

and
ij = k = −ji, jk = i = −kj, ki = j = −ik.

With this bilinear multiplication, R4 becomes an algebra, the quaternions.
With each element

x = α1 + βi + γj + δk

we associate its conjugate
x = α1− βi− γj− δk,

and its norm |x| defined by
|x|2 := xx = xx

with associated bilinear form
〈x|y〉 =

1
2
(xy + yx).

Note that xy = yx, which implies

|x|2 = |x|2, |xy| = |x||y|.

So
|x| = 1 ⇒ |xy| = |yx| = |y|.
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We conclude that the unit quaternions, S3 is a compact Lie group under the quaternionic mul-
tiplication.

Also, for any x 6= 0 we have

x−1 =
x
|x|2 .

Since 1 is the identity element of the unit quaternions, the basis of the tangent space to
S3 at 1 can be thought of as given by

i, j, k.

More precisely, it is given by
=1i, =1j, =1k.

(a) Show that if ξ is a linear combination of i, j,k then (i) ξ2 = −|ξ|2, and (ii) the
1–parameter subgroup in S3, γ(t) = exp tξ, is given by

exp tξ = (cos |ξ|t)1 + (sin |ξ|t) ξ

|ξ| .

(b) Show that the Lie algebra is given by

[i, j] = 2k, [j,k] = 2i, [k, i] = 2j.

(c) Declare the basis {i, j,k} of S3 to be orthonormal in the tangent space to S3 at 1 (S3

does not have a Riemannian metric, yet), and use left-invariance to define a Riemannian metric
on S3. Show that the Riemannian metric is bi-invariant, and has sectional curvature identically
equal to 1.

(d) Let H denote the Lie subgroup

H = S1 = {cos θ1 + sin θi : θ ∈ R}.
Show that G/H is the 2–sphere in R3 with constant sectional curvature equal to 4.

The orthogonal group

Exercise 38. Given the matrix

A =
(

0 1
−1 0

)
,

determine the 1–parameter subgroup of O(2) with A its initial velocity vector at the identity.
As an exercise, do it by literally calculating etA.

Exercise 39. Recall that Mn denotes the space of (n × n) real matrices, and GL(n) the non-
singular elements of Mn. Let Sym (n) denote the symmetric (n× n) matrices.

(a) Prove that the inclusion map into Sym (n) → Mn realizes Sym (n) as an n(n + 1)/2–
dimensional submanifold of Mn.

(b) Show that the mapping

ψ : GL(n) → Sym (n), ψ(A) = A ·AT ,

where AT denotes the transpose of A, has the unit matrix I for a regular value.
(c) Show that the orthogonal group O(n) = ψ−1[I] is an n(n−1)/2–dimensional compact

submanifold of GL(n).
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(d) Show that the tangent space to O(n) at the identity may be represented by the
skew-symmetric (n× n) matrices.

(e) Prove that O(n) has precisely two components.

Exercise 40.
(a) Show that SO(3) is diffeomorphic to RP3 (3–dimensional real projective space).
(b) What about the unit tangent bundle of S2?

Coverings and bundles

Exercise 41. Show that if π : M → Mo is a differentiable covering, M orientable, and the deck
tranformation group of the covering has an orientation reversing diffeomorphism, then Mo is
nonorientable.

Exercise 42. Let π : M → Mo be a Riemannian covering, M compact. Characterize V (M)/V (Mo).

Definition. Recall that an n–dimensional vector bundle consists of a projection

π : E → B

of E onto B, where E and B are C∞ manifolds, π ∈ C∞, such that:
(i) for each q ∈ B, the fiber π−1[q] has the structure of n–dimensional vector space;
(ii) local triviality: for each p ∈ B there exists a neighborhood U = U(p) and a homeo-

morphism φ : π−1[U ] → U × Rn such that φ|π−1[q] is an isomorphism of π−1[q] to Rn.
We say that two vector bundles π1 : E1 → B1 and π2 : E2 → B2 are equivalent if there

exist C∞ diffeomorphisms Φ : E1 → E2 and φ : B1 → B2 such that for every p ∈ B1, Φ|π−1
1 [p] is

a vector space isomorphism of π1
−1[p] to π2

−1[φ(p)].
We say that the projection π : M × Rn → M onto the first factor is the standard trivial

bundle. We refer to a vector bundle as trivial if it is equivalent to the standard trivial bundle.

Exercise 43. Consider the subgroup T = {Tn : n ∈ Z} of diffeomorphisms of R2 generated by
the mapping

T : (x, y) 7→ (x + 1,−y).

Show that the quotient space E = Rn/T is a 1–dimensional vector bundle over S1, but is not
trivial.

Degree theory

Exercise 44. Show that the degree of composition g◦f is equal to the product (deg g)(deg f).

Exercise 45. Show that every complex polynomial of degree n gives rise to a map of the sphere
S2 to itself of degree n.

Exercise 46. Show that if two maps f and g from the manifold X to Sn satisfy |f(x)−g(x)| < 2
for all x ∈ X, then f is homotopic to g, the homotopy being smooth if f and g are smooth.

Exercise 47. Show that any map Sn to Sn of odd degree must carry some pair of antipodal
points into a pair of antipodal points.
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Exercise 48. Let ω be a 1–form on S2 invariant under all orthogonal transformations of R3.
Show that ω must vanish identically.
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