
MATH 33 - Analytic Geometry and Calculus III, Sec. E01 – 20088

Third test. Time allowed: two hours. Professor Luis Fernández

NAME:_

INSTRUCTIONS: Solve the following exercises. You must show work and justify your answers in order to receive credit in any of the exercises.

- [14] **1.** Consider the curve $\vec{r}(t) = (2t, 1 3t, 5 + 4t)$.
 - a) Find the length of the curve \vec{r} from t=2 to t=5.
 - **b)** Reparametrize the curve \vec{r} with respect to arc length.
 - c) Find the curvature of \vec{r} . (Remember that $\kappa(s) = \frac{d\vec{T}}{ds}$, where $\vec{T}(s)$ is the unit tangent vector to $\vec{r}(s)$.)
- [10] 2. Determine the signs of the partial derivatives f_x and f_y at the point P for the function f whose graph is shown.

- [12] 3. Find the limit, if it exists, or show that the limit does not exist.
 - a) $\lim_{(x,y)\to(0,0)} \frac{y^4}{x^4+3y^4}$.
 - b) $\lim_{(x,y)\to(0,0)} \frac{xy}{\sqrt{x^2+y^2}}$ (HINT: Write x and y in polar coordinates (r,θ) and do the limit when $r\to 0^+$.)
- [10] 4. Find $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ for the following functions. You do not need to simplify the answer.

a)
$$f(x,y) = xye^{xy}$$

b)
$$f(x,y) = (2x+3y)^{10}$$

- [10] **5.** For $f(x,y) = x^3y^5 + 2x^4y$, find
 - a) $\frac{\partial^2 f}{\partial x^2}$

 $\mathbf{b)} \ \frac{\partial^2 f}{\partial x \partial y}$

 $\mathbf{c)} \ \frac{\partial^2 f}{\partial y \partial x}$

 $\mathbf{d)} \ \frac{\partial^2 f}{\partial y^2}$

- [12] **6.** For the function $f(x,y) = x\sqrt{y}$,
 - a) Find the linearization L(x,y) at the point (1,4).
 - b) Find the equation of the tangent plane to the graph of f at the point (1,4,2).
- [12] **7.** If z = f(x, y), where f is differentiable, and
 - x = g(t) and y = h(t).

 - g(3) = 2 and h(3) = 7. g'(3) = 5 and h'(3) = -4. $f_x(2,7) = 6$ and $f_y(2,7) = -8$.

Find $\frac{dz}{dt}$ when t = 3.

[10] 8. Let $R = \text{Ln}(u^2 + v^2 + w^2)$, where u = x + 2y, v = 2x - y, and w = 2xy.

Find $\frac{\partial R}{\partial x}$ and $\frac{\partial R}{\partial y}$ when x = 1, y = 1.

- [10] **9.** For the function $f(x,y) = \sin(2x + 3y)$
 - a) Find the gradient of f at the point (-6, 4).
 - **b)** Find $D_{\vec{u}}f(-6,4)$, where $\vec{u} = (\frac{\sqrt{3}}{2}, \frac{1}{2})$.
- Find the maximum rate of change of $f(x,y) = \frac{y^2}{x}$ at the point (2,4) and the direction at which it occurs.