MATH 33 - Analytic Geometry and Calculus III, Sec. E01 – 20088 Second test. Time allowed: two hours. Professor Luis Fernández

NAME:_

INSTRUCTIONS: Solve the following exercises. **You must show work** and **justify your answers** in order to receive credit in any of the exercises.

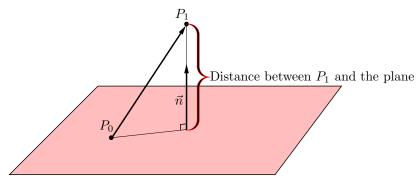
[12] **1.** For the power series $\sum_{n=1}^{\infty} \frac{x^n}{n 2^n}$,

a) Find the radius of convergence.

b) Find the interval of convergence.

[12] **2.** Find the Taylor series of the function $f(x) = \cos x$ at the point $a = \frac{\pi}{2}$.

- [14] **3.** Given $f(x) = \sqrt{x}$,
 - a) Approximate the function f by a Taylor polynomial with degree 2 at the number a = 4.
 - b) Use Taylor's inequality to estimate the accuracy of the approximation $f(x) \approx T_2(x)$ when x lies in the interval $4 \le x \le 5$.


[12] **4.** Use the binomial series to expand the function $f(x) = \frac{1}{(x+1)^2}$ as a power series.

- [10] 5. Find the equation of a sphere centered at the point O = (3, -2, 4) that passes through the point P = (5, -1, 2).
- [15] **6.** Let A = (2, 1, 3), B = (3, 2, 4) and C = (1, 2, 2) be the vertices of a triangle. Let \vec{a} be the vector from A to B and let \vec{b} be the vector from B to C.
 - a) Calculate the coordinates of the vectors \vec{a} and \vec{b} .
 - **b**) Find the length of \vec{a} and the length of \vec{b} .
 - c) Find the angle between \vec{a} and \vec{b} (you may need to use your calculator).
 - d) Find the projection $\operatorname{proj}_{\vec{a}} \vec{b}$ of \vec{b} over \vec{a} .
 - e) Calculate the area of the triangle $\triangle ABC$.

[9] 7. Let $\vec{a} = (2, 1, -4)$, $\vec{b} = (1, -1, -3)$, and $\vec{c} = (3, -2, -3)$.

- **a)** Find $\vec{a} \times \vec{b}$
- b) Find a unit vector that is perpendicular to both \vec{a} and \vec{b} .
- c) Find the volume of the parallelepiped determined by \vec{a} , \vec{b} , and \vec{c} .
- [15] 8. Given P = (2, -3, 4), Q = (1, 1, -3), and $\vec{n} = (1, -2, -1)$,
 - a) Find the equation of the plane that passes though the point P and is perpendicular to the vector \vec{n} .
 - b) Find the equation of the line perpendicular to the plane of part a) that passes through the point Q.
 - c) Find the equation of the plane that passes though the points P, Q and R = (0, 1, 1).

[10] **9.** Use the following picture to find the distance between the plane 2(x-1) - 3(y+1) + (z-2) = 0 and the point P = (2, 3, 4).

HINT: Draw the projection of $\overrightarrow{P_0P_1}$ over \vec{n} .

109