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Abstract. We show that various natural topologies and analytic structures
that can be given to the space of harmonic maps from the 2-sphere to the
m-sphere are all equal.

1. Introduction

Let Holδ(S
2,CPN ) denote the set of holomorphic maps of degree δ from S2 to

CP
N . Regarding S2 as C ∪ {∞}, a map ψ ∈ Holδ(S

2,CPN ) can always be written
uniquely, for all z ∈ C, as ψ(z) = [f (z)], where f(z) = (f0, . . . , fN ) is an N -tuple of
polynomials in z without nontrivial common factors and maximum degree δ. Then
f(∞) can be interpreted as a limit. Let

Resδ = {f = (f0, . . . , fN) ∈ C[z]Nδ : the fi have a nontrivial common factor}

and let C[z]Nδ−1 ⊂ C[z]Nδ be the subspace of N -tuples of polynomials of degree
δ − 1. Using the usual identification topology (which we will call the Euclidean

topology, or E topology for short) induced by the projection C[z]N → P(C[z]N)
given by P → [P ], both Resδ and C[z]Nδ−1 are closed subvarieties of C[z]Nδ (Resδ
is for example the zero locus of the generalized resultant defined in [5]). We thus
have a bijective map

P : Holδ(S
2,CPN ) → P(C[z]N \ (Resδ ∪ C[z]Nδ−1))

ψ → [f ]

Give P(C[z]N \ (Resδ ∪ C[z]Nδ−1)) the subspace topology, and Holδ(S
2,CPN ) the

compact-open (C-O for short) topology. Then we have

Proposition 1. The map P, with the topologies specified above, is a homeomor-

phism.

For the proof we will use the following definition and lemma, which will be very
useful in subsequent proofs. Let Vδ be the set of possible (2δ + 1)-tuples of points
in the graphs of projectivized polynomial vectors, i.e.

Vaδ =
{

((z0, [f (z0)]), . . . , (z2n, [f(z2n)]) ∈ (C× CP
N )2δ+1 : zi 6= zj for i 6= j,

f ∈ P(C[z]N \ (Resδ ∪ C[z]Nδ−1))
}

We have
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Lemma 1. The map

Polδ : Vaδ → P(C[z]N \ (Resδ ∪C[z]Nδ−1))

((z0, [f(z0)]), . . . , (z2n, [f(z2n)]) → g such that [g(zk)] = [f (zk)], 0 ≤ k ≤ 2δ + 1

is well defined, surjective and algebraic.

Proof. To prove that it is well defined we show that [f ] ∈ P(C[z]N \(Resδ∪C[z]
N
δ−1))

is completely determined by its values at 2δ + 1 distinct points {z0, . . . , z2δ+1} as
follows. Note that [f(z)] = [g(z)] if and only if the determinants of the 2×2 minors
of the matrix

(

f (z)
g(z)

)

are all identically zero. These determinants are polynomials of degree 2δ + 1, so
they will be identically zero if and only if they vanish at 2δ+1 points. Therefore g
is given uniquely by the equations given by the vanishing of all the 2× 2 minors of

(1)

(

f(zk)
g(zk)

)

for 0 ≤ k ≤ 2δ. These equations are linear in the coefficients of the components of
g, so they are given by a formula involving only matrix operations (it is not hard
to find the explicit formula, but we will not need it). Therefore Polδ is algebraic.

Finally is clear from the definition of Vaδ that Polδ is surjective.
�

Proof of Proposition 1. Fix z0, . . . , z2δ distinct points in C. Then the map

(z0, ez0)× · · · × (z2δ, ez2δ) : Holδ(S
2,CPN ) → Vaδ,

where ez : Holδ(S
2,CPN ) → CP

N is the evaluation map defined by ez(ψ) = ψ(z)
is continuous because each ezi is continuous [2, p. 259]. Therefore P is continuous
since it is the composition of this continuous map and Polδ, which is also continuous
by Lemma 1.

Since P is bijective, the collection P−1(E) = {P−1(U) : U ∈ E} defines a

topology in Holδ(S
2,CPN ) with the property that the evaluation map

e : S2 ×Holδ(S
2,CPN ) → CP

N

(z, ψ) → ψ(z)

is continuous. The compact open topology is the coarsest topology with this prop-
erty [3, p. 223], so if U is open in the C-O topology then U ∈ P−1(E), so P(U) ∈ E,
so P is an open map.

�

Corollary 1. The E topology and the C-O topology in HH
(≤n)
d (S2,Zn) coincide.

Proof. The compact open topology in HH
(≤n)
d (S2,Zn) is the same as the relative

topology as a subset of Hol2d(S
2,CPNn) (see e.g. [2]), which by Proposition 1

coincides with the relative topology as a subset of P(C[z]N \ (Res2d ∪ C[z]N2d−1)).
�

Let Harm
(≤2n),+
d (S2, S2n) = Harm

(≤2(n−1))
d (S2, S2n) ∪Harmf,+

d (S2, S2n). Then

Proposition 2. The map Π : HH
(≤n)
d (S2,Zn) → Harm

(≤2n),+
d (S2, S2n) is contin-

uous and closed.
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Proof. Since π : Zn → S2n is continuous, so is Π (see [2, p. 259]).
To prove that Π is closed we will use the same proof as in [1, Lemma 3.1]

and [4, Theorem 2.3], with very slight modifications. Let C be a closed subset of

HH
(≤n)
d (S2,Zn) and let C denote the closure of C in P(C[z]Nn+1

2d ). Let y be a limit

point of Π(C) ⊂ Harm
(≤2n),+
d (S2, S2n) and {yk} a sequence converging to y (of

course, in the C-O topology). We want to prove that y ∈ Π(C).

Let {xk} be a sequence in HH
(≤n)
d (S2,Zn) such that Π(xk) = yk, k = 1, 2, . . . .

Then there is a convergent subsequence, which will also be denoted by {xk}, con-

verging to x ∈ C ⊂ P(C[z]Nn+1
2d ). Write

xk = [gk] x = [β g] k = 1, 2, . . . ,

where g, gk ∈ C[z]Nn+1
2d , β ∈ C[z]2d, and the components of g and gk are coprime.

For fixed z ∈ C the evaluation map ez : C[z]Nn+1
2d → CNn+1 defined by ez(p) =

p(z) is continuous in the E topology; it is in fact linear, so e−1(0) is a subspace of

C[z]Nn+1
2d . Therefore the map

Ez : P(C[z]Nn+1
2d \ e−1

z (0)) → CP
Nn

is continuous in the E topology.
Let z ∈ C such that β(z) 6= 0. Then xk and x are in P(C[z]Nn+1

2d \ e−1
z (0)), so

limk→∞ xk(z) = limk→∞ Ez(xk) = Ez(x) = x(z). Similarly, since the evaluation

map ez : Harm
(≤2n),+
d (S2, S2n) → S2n is continuous in the C-O topology, y(z) =

ez(y) = limk→∞ ez(yk). Therefore,

y(z) = lim
k→∞

ez(yk)

= lim
k→∞

ez(Π(xk))

= lim
k→∞

π(xk(z))

= π(x(z))

= π([β(z)g(z)])

= π([g(z)]).

Since (z → π([g(z)])) is defined and continuous for every z ∈ C, and since the
functions y and (z → π([g(z)])) are equal for all but a finite number of points of S2,
continuity implies that these two functions must be the same. Thus, (z → [g(z)])
is a twistor lift of y, and since y has area 4πd, (z → [g(z)]) must have degree 2d, so
β must be a constant. Therefore x = [g] ∈ C has degree 2d and its components are
coprime. On the other hand its image lies in Zn and it must be horizontal since these

conditions are closed. Thus x ∈ C ∩ HH
(≤n)
d (S2,Zn) = C, so y = Π(x) ∈ Π(C), as

desired.
�

Proposition 3. The map

ρk : Harm
(2k)
d (S2, Sm) → Gr(2k + 1,Rm+1)

ϕ → (2k + 1)-subspace where ϕ(S2) lies.

is continuous, and Harm
(2k)
d (S2, Sm) is a fiber bundle over Gr(2k + 1,Rm+1) with

fiber Harmf,+
d (S2, S2k).
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Proof. For each (2k + 1)-tuple z = (z0, . . . , z2k) of distinct complex numbers the

map Lz that takes φ ∈ Harm
(2k)
d (S2, Sm) to φ(z0) ∧ · · · ∧ φ(z2k) ∈ Λ2k+1Rm+1 is

continuous in the C-O topology of Harm
(2k)
d (S2, Sm) since it is the composition of

evaluation and wedging. Therefore Dz := L−1
z

(0) is closed in Harm
(2k)
d (S2, Sm).

Thinking of Gr(2k + 1,Rm+1) as a subvariety of P(Λ2k+1Rm+1) via the Plücker
embedding, note that for all φ ∈ (Dz)

c, ρk(φ) = [L(φ)], so ρk is continuous in

(Dz)
c. Now, Harm

(2k)
d (S2, Sm) can be covered by open subsets of the form (Dz)

c,
so ρk is continuous.

Now we prove that Harm
(2k)
d (S2, Sm) is a fiber bundle over Gr(2k + 1,Rm+1)

with fiber Harmf,+
d (S2, S2k). The group SO(m + 1,R) acts on Gr(2k + 1,Rm+1)

and Sm; the action of A ∈ SO(m + 1,R) on x ∈ Gr(2k + 1,Rm+1) or Sm will be
denoted by Ax. Further, since SO(m + 1,R) acts by isometries on Sm, it induces

an action of SO(m + 1,R) on Harm
(2k)
d (S2, Sm); the action of A ∈ SO(m + 1,R)

on φ ∈ Harm
(2k)
d (S2, Sm) will be denoted by A∗φ.

Let P0 ∈ Gr(2k + 1,Rm+1) be the subspace of Rm+1 generated by the first
(2k + 1) coordinate vectors of the standard basis. Consider the map τ : SO(m +
1,R) → Gr(2k + 1,Rm+1) defined by τ(A) = AP0. This gives SO(m + 1,R) the
structure of a fiber bundle over Gr(2k + 1,Rm+1). Given P ∈ Gr(2k + 1,Rm+1)
let U ∋ P be open and σ : U → SO(m+ 1,R) be a local section of this bundle, so
τ(σ(Q)) = Aσ(Q) = Q for all Q ∈ U .

Since ρk is continuous, ρ−1
k (U) is open in Harm

(2k)
d (S2, Sm). Let i : S2k → S2n

be the inclusion of S2k in the first 2k + 1 coordinates of S2n. This induces a
continuous map

i∗ : Harmf,+
d (S2, S2k) → Harm

(2k)
d (S2, Sm).

Define the map

r : U × Harmf,+
d (S2, S2k) → Harm

(2k)
d (S2, Sm)

(P, φ) → r(P, φ) = σ(P )∗ ◦ i∗(φ)

Since it is a composition of continuous functions, r is continuous. Also, since i∗(φ)
lies in P0, σ(P )∗ ◦ i∗(φ) lies in P , so σk(r(P, φ)) = P .

The inverse of r can be written as

r−1(γ) = (ρk(γ), [σ(ρk(γ))]
−1
∗ γ),

which is also a composition of continuous functions. Therefore r is a homeomor-
phism, proving the claim. �
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