THE TOPOLOGY OF THE SPACE OF HARMONIC 2-SPHERES IN THE M-SPHERE

LUIS FERNÁNDEZ

ABSTRACT. We show that various natural topologies and analytic structures that can be given to the space of harmonic maps from the 2-sphere to the m-sphere are all equal.

1. INTRODUCTION

Let $\operatorname{Hol}_{\delta}(S^2, \mathbb{CP}^N)$ denote the set of holomorphic maps of degree δ from S^2 to \mathbb{CP}^N . Regarding S^2 as $\mathbb{C} \cup \{\infty\}$, a map $\psi \in \operatorname{Hol}_{\delta}(S^2, \mathbb{CP}^N)$ can always be written uniquely, for all $z \in \mathbb{C}$, as $\psi(z) = [f(z)]$, where $f(z) = (f_0, \ldots, f_N)$ is an N-tuple of polynomials in z without nontrivial common factors and maximum degree δ . Then $f(\infty)$ can be interpreted as a limit. Let

 $\operatorname{Res}_{\delta} = \{ \boldsymbol{f} = (f_0, \dots, f_N) \in \mathbb{C}[z]_{\delta}^N : \text{the } f_i \text{ have a nontrivial common factor} \}$

and let $\mathbb{C}[z]_{\delta-1}^N \subset \mathbb{C}[z]_{\delta}^N$ be the subspace of *N*-tuples of polynomials of degree $\delta - 1$. Using the usual identification topology (which we will call the *Euclidean* topology, or E topology for short) induced by the projection $C[z]^N \to \mathbb{P}(\mathbb{C}[z]^N)$ given by $\mathbf{P} \to [\mathbf{P}]$, both $\operatorname{Res}_{\delta}$ and $\mathbb{C}[z]_{\delta-1}^N$ are closed subvarieties of $\mathbb{C}[z]_{\delta}^N$ ($\operatorname{Res}_{\delta}$ is for example the zero locus of the generalized resultant defined in [5]). We thus have a bijective map

$$\begin{aligned} \mathcal{P} : \mathrm{Hol}_{\delta}(S^2, \mathbb{CP}^N) &\to & \mathbb{P}(\mathbb{C}[z]^N \setminus (\mathrm{Res}_{\delta} \cup \mathbb{C}[z]^N_{\delta-1})) \\ \psi &\to & [f] \end{aligned}$$

Give $\mathbb{P}(\mathbb{C}[z]^N \setminus (\operatorname{Res}_{\delta} \cup \mathbb{C}[z]^N_{\delta-1}))$ the subspace topology, and $\operatorname{Hol}_{\delta}(S^2, \mathbb{CP}^N)$ the compact-open (C-O for short) topology. Then we have

Proposition 1. The map \mathcal{P} , with the topologies specified above, is a homeomorphism.

For the proof we will use the following definition and lemma, which will be very useful in subsequent proofs. Let V_{δ} be the set of possible $(2\delta + 1)$ -tuples of points in the graphs of projectivized polynomial vectors, i.e.

$$Va_{\delta} = \left\{ ((z_0, [\boldsymbol{f}(z_0)]), \dots, (z_{2n}, [\boldsymbol{f}(z_{2n})]) \in (\mathbb{C} \times \mathbb{CP}^N)^{2\delta+1} : z_i \neq z_j \text{ for } i \neq j, \\ \boldsymbol{f} \in \mathbb{P}(\mathbb{C}[z]^N \setminus (\operatorname{Res}_{\delta} \cup \mathbb{C}[z]^N_{\delta-1})) \right\}$$

We have

²⁰¹⁰ Mathematics Subject Classification. Primary 58D10, 58E20.

Lemma 1. The map

 $\begin{aligned} \operatorname{Pol}_{\delta}: \operatorname{Va}_{\delta} &\to & \mathbb{P}(\mathbb{C}[z]^{N} \setminus (\operatorname{Res}_{\delta} \cup \mathbb{C}[z]_{\delta-1}^{N})) \\ & ((z_{0}, [\boldsymbol{f}(z_{0})]), \dots, (z_{2n}, [\boldsymbol{f}(z_{2n})]) &\to & \boldsymbol{g} \text{ such that } [\boldsymbol{g}(z_{k})] = [\boldsymbol{f}(z_{k})], \ 0 \leq k \leq 2\delta + 1 \\ & \text{is well defined, surjective and algebraic.} \end{aligned}$

Proof. To prove that it is well defined we show that $[\mathbf{f}] \in \mathbb{P}(\mathbb{C}[z]^N \setminus (\operatorname{Res}_{\delta} \cup \mathbb{C}[z]_{\delta-1}^N))$ is completely determined by its values at $2\delta + 1$ distinct points $\{z_0, \ldots, z_{2\delta+1}\}$ as follows. Note that $[\mathbf{f}(z)] = [\mathbf{g}(z)]$ if and only if the determinants of the 2×2 minors of the matrix

$$egin{pmatrix} oldsymbol{f}(z)\ oldsymbol{g}(z) \end{pmatrix}$$

are all identically zero. These determinants are polynomials of degree $2\delta + 1$, so they will be identically zero if and only if they vanish at $2\delta + 1$ points. Therefore g is given uniquely by the equations given by the vanishing of all the 2 × 2 minors of

(1)
$$\begin{pmatrix} \boldsymbol{f}(z_k) \\ \boldsymbol{g}(z_k) \end{pmatrix}$$

for $0 \le k \le 2\delta$. These equations are linear in the coefficients of the components of \boldsymbol{g} , so they are given by a formula involving only matrix operations (it is not hard to find the explicit formula, but we will not need it). Therefore $\operatorname{Pol}_{\delta}$ is algebraic.

Finally is clear from the definition of Va_{δ} that Pol_{δ} is surjective.

Proof of Proposition 1. Fix $z_0, \ldots, z_{2\delta}$ distinct points in \mathbb{C} . Then the map

$$(z_0, e_{z_0}) \times \cdots \times (z_{2\delta}, e_{z_{2\delta}}) : \operatorname{Hol}_{\delta}(S^2, \mathbb{CP}^N) \to \operatorname{Va}_{\delta}$$

where $e_z : \operatorname{Hol}_{\delta}(S^2, \mathbb{CP}^N) \to \mathbb{CP}^N$ is the evaluation map defined by $e_z(\psi) = \psi(z)$ is continuous because each e_{z_i} is continuous [2, p. 259]. Therefore \mathcal{P} is continuous since it is the composition of this continuous map and $\operatorname{Pol}_{\delta}$, which is also continuous by Lemma 1.

Since \mathcal{P} is bijective, the collection $\mathcal{P}^{-1}(E) = \{\mathcal{P}^{-1}(U) : U \in E\}$ defines a topology in $\operatorname{Hol}_{\delta}(S^2, \mathbb{CP}^N)$ with the property that the evaluation map

$$e: S^2 \times \operatorname{Hol}_{\delta}(S^2, \mathbb{CP}^N) \to \mathbb{CP}^N$$
$$(z, \psi) \to \psi(z)$$

is continuous. The compact open topology is the coarsest topology with this property [3, p. 223], so if U is open in the C-O topology then $U \in \mathcal{P}^{-1}(E)$, so $\mathcal{P}(U) \in E$, so \mathcal{P} is an open map.

Corollary 1. The E topology and the C-O topology in $HH_d^{(\leq n)}(S^2, \mathbb{Z}_n)$ coincide.

Proof. The compact open topology in $\operatorname{HH}_{d}^{(\leq n)}(S^2, \mathbb{Z}_n)$ is the same as the relative topology as a subset of $\operatorname{Hol}_{2d}(S^2, \mathbb{CP}^{N_n})$ (see e.g. [2]), which by Proposition 1 coincides with the relative topology as a subset of $\mathbb{P}(\mathbb{C}[z]^N \setminus (\operatorname{Res}_{2d} \cup \mathbb{C}[z]_{2d-1}^N))$.

Let
$$\operatorname{Harm}_{d}^{(\leq 2n),+}(S^{2}, S^{2n}) = \operatorname{Harm}_{d}^{(\leq 2(n-1))}(S^{2}, S^{2n}) \cup \operatorname{Harm}_{d}^{f,+}(S^{2}, S^{2n})$$
. Then

Proposition 2. The map $\Pi : \operatorname{HH}_{d}^{(\leq n)}(S^{2}, \mathbb{Z}_{n}) \to \operatorname{Harm}_{d}^{(\leq 2n), +}(S^{2}, S^{2n})$ is continuous and closed.

Proof. Since $\pi : \mathbb{Z}_n \to S^{2n}$ is continuous, so is Π (see [2, p. 259]).

To prove that Π is closed we will use the same proof as in [1, Lemma 3.1] and [4, Theorem 2.3], with very slight modifications. Let C be a closed subset of $\operatorname{HH}_d^{(\leq n)}(S^2, \mathbb{Z}_n)$ and let \overline{C} denote the closure of C in $\mathbb{P}(\mathbb{C}[z]_{2d}^{N_n+1})$. Let y be a limit point of $\Pi(C) \subset \operatorname{Harm}_d^{(\leq 2n),+}(S^2, S^{2n})$ and $\{y_k\}$ a sequence converging to y (of course, in the C-O topology). We want to prove that $y \in \Pi(C)$.

Let $\{x_k\}$ be a sequence in $\operatorname{HH}_d^{(\leq n)}(S^2, \mathbb{Z}_n)$ such that $\Pi(x_k) = y_k, k = 1, 2, \ldots$ Then there is a convergent subsequence, which will also be denoted by $\{x_k\}$, converging to $x \in \overline{C} \subset \mathbb{P}(\mathbb{C}[z]_{2d}^{N_n+1})$. Write

$$x_k = [\boldsymbol{g}_k] \quad x = [\beta \, \boldsymbol{g}] \qquad k = 1, 2, \dots,$$

where $\boldsymbol{g}, \boldsymbol{g}_k \in \mathbb{C}[z]_{2d}^{N_n+1}$, $\beta \in C[z]_{2d}$, and the components of \boldsymbol{g} and \boldsymbol{g}_k are coprime. For fixed $z \in \mathbb{C}$ the evaluation map $e_z : \mathbb{C}[z]_{2d}^{N_n+1} \to \mathbb{C}^{N_n+1}$ defined by $e_z(p) =$

p(z) is continuous in the E topology; it is in fact linear, so $e^{-1}(0)$ is a subspace of $\mathbb{C}[z]_{2d}^{N_n+1}$. Therefore the map

$$E_z: \mathbb{P}(\mathbb{C}[z]_{2d}^{N_n+1} \setminus e_z^{-1}(0)) \to \mathbb{CP}^{N_n}$$

is continuous in the E topology.

Let $z \in \mathbb{C}$ such that $\hat{\beta}(z) \neq 0$. Then x_k and x are in $\mathbb{P}(\mathbb{C}[z]_{2d}^{N_n+1} \setminus e_z^{-1}(0))$, so $\lim_{k\to\infty} x_k(z) = \lim_{k\to\infty} E_z(x_k) = E_z(x) = x(z)$. Similarly, since the evaluation map e_z : $\operatorname{Harm}_d^{(\leq 2n),+}(S^2, S^{2n}) \to S^{2n}$ is continuous in the C-O topology, $y(z) = e_z(y) = \lim_{k\to\infty} e_z(y_k)$. Therefore,

$$y(z) = \lim_{k \to \infty} e_z(y_k)$$

=
$$\lim_{k \to \infty} e_z(\Pi(x_k))$$

=
$$\lim_{k \to \infty} \pi(x_k(z))$$

=
$$\pi(x(z))$$

=
$$\pi([\beta(z)g(z)])$$

=
$$\pi([g(z)]).$$

Since $(z \to \pi([\boldsymbol{g}(z)]))$ is defined and continuous for every $z \in \mathbb{C}$, and since the functions y and $(z \to \pi([\boldsymbol{g}(z)]))$ are equal for all but a finite number of points of S^2 , continuity implies that these two functions must be the same. Thus, $(z \to [\boldsymbol{g}(z)])$ is a twistor lift of y, and since y has area $4\pi d$, $(z \to [\boldsymbol{g}(z)])$ must have degree 2d, so β must be a constant. Therefore $x = [\boldsymbol{g}] \in \overline{C}$ has degree 2d and its components are coprime. On the other hand its image lies in \mathcal{Z}_n and it must be horizontal since these conditions are closed. Thus $x \in \overline{C} \cap \operatorname{HH}^{(\leq n)}_d(S^2, \mathcal{Z}_n) = C$, so $y = \Pi(x) \in \Pi(C)$, as desired.

Proposition 3. The map

$$\rho_k : \operatorname{Harm}_d^{(2k)}(S^2, S^m) \to \operatorname{Gr}(2k+1, \mathbb{R}^{m+1})$$

$$\varphi \to (2k+1) \text{-subspace where } \varphi(S^2) \text{ lies.}$$

is continuous, and $\operatorname{Harm}_{d}^{(2k)}(S^{2}, S^{m})$ is a fiber bundle over $\operatorname{Gr}(2k+1, \mathbb{R}^{m+1})$ with fiber $\operatorname{Harm}_{d}^{f,+}(S^{2}, S^{2k})$.

LUIS FERNÁNDEZ

Proof. For each (2k + 1)-tuple $\mathbf{z} = (z_0, \ldots, z_{2k})$ of distinct complex numbers the map $L_{\mathbf{z}}$ that takes $\phi \in \operatorname{Harm}_d^{(2k)}(S^2, S^m)$ to $\phi(z_0) \wedge \cdots \wedge \phi(z_{2k}) \in \Lambda^{2k+1} \mathbb{R}^{m+1}$ is continuous in the C-O topology of $\operatorname{Harm}_d^{(2k)}(S^2, S^m)$ since it is the composition of evaluation and wedging. Therefore $D_{\mathbf{z}} := L_{\mathbf{z}}^{-1}(0)$ is closed in $\operatorname{Harm}_d^{(2k)}(S^2, S^m)$. Thinking of $\operatorname{Gr}(2k + 1, \mathbb{R}^{m+1})$ as a subvariety of $\mathbb{P}(\Lambda^{2k+1}\mathbb{R}^{m+1})$ via the Plücker embedding, note that for all $\phi \in (D_{\mathbf{z}})^c$, $\rho_k(\phi) = [L(\phi)]$, so ρ_k is continuous in $(D_{\mathbf{z}})^c$. Now, $\operatorname{Harm}_d^{(2k)}(S^2, S^m)$ can be covered by open subsets of the form $(D_{\mathbf{z}})^c$, so ρ_k is continuous.

Now we prove that $\operatorname{Harm}_{d}^{(2k)}(S^{2}, S^{m})$ is a fiber bundle over $\operatorname{Gr}(2k+1, \mathbb{R}^{m+1})$ with fiber $\operatorname{Harm}_{d}^{f,+}(S^{2}, S^{2k})$. The group $SO(m+1, \mathbb{R})$ acts on $\operatorname{Gr}(2k+1, \mathbb{R}^{m+1})$ and S^{m} ; the action of $A \in SO(m+1, \mathbb{R})$ on $x \in \operatorname{Gr}(2k+1, \mathbb{R}^{m+1})$ or S^{m} will be denoted by Ax. Further, since $SO(m+1, \mathbb{R})$ acts by isometries on S^{m} , it induces an action of $SO(m+1, \mathbb{R})$ on $\operatorname{Harm}_{d}^{(2k)}(S^{2}, S^{m})$; the action of $A \in SO(m+1, \mathbb{R})$ on $\phi \in \operatorname{Harm}_{d}^{(2k)}(S^{2}, S^{m})$ will be denoted by $A_{*}\phi$.

Let $P_0 \in \operatorname{Gr}(2k+1,\mathbb{R}^{m+1})$ be the subspace of \mathbb{R}^{m+1} generated by the first (2k+1) coordinate vectors of the standard basis. Consider the map $\tau : SO(m+1,\mathbb{R}) \to \operatorname{Gr}(2k+1,\mathbb{R}^{m+1})$ defined by $\tau(A) = AP_0$. This gives $SO(m+1,\mathbb{R})$ the structure of a fiber bundle over $\operatorname{Gr}(2k+1,\mathbb{R}^{m+1})$. Given $P \in \operatorname{Gr}(2k+1,\mathbb{R}^{m+1})$ let $U \ni P$ be open and $\sigma : U \to SO(m+1,\mathbb{R})$ be a local section of this bundle, so $\tau(\sigma(Q)) = A\sigma(Q) = Q$ for all $Q \in U$.

Since ρ_k is continuous, $\rho_k^{-1}(U)$ is open in $\operatorname{Harm}_d^{(2k)}(S^2, S^m)$. Let $i: S^{2k} \to S^{2n}$ be the inclusion of S^{2k} in the first 2k + 1 coordinates of S^{2n} . This induces a continuous map

$$i_* : \operatorname{Harm}_d^{f,+}(S^2, S^{2k}) \to \operatorname{Harm}_d^{(2k)}(S^2, S^m).$$

Define the map

$$\begin{aligned} r: U \times \operatorname{Harm}_{d}^{f,+}(S^{2}, S^{2k}) &\to \operatorname{Harm}_{d}^{(2k)}(S^{2}, S^{m}) \\ (P, \phi) \to r(P, \phi) = \sigma(P)_{*} \circ i_{*}(\phi) \end{aligned}$$

Since it is a composition of continuous functions, r is continuous. Also, since $i_*(\phi)$ lies in P_0 , $\sigma(P)_* \circ i_*(\phi)$ lies in P, so $\sigma_k(r(P,\phi)) = P$.

The inverse of r can be written as

$$r^{-1}(\gamma) = (\rho_k(\gamma), [\sigma(\rho_k(\gamma))]_*^{-1}\gamma),$$

which is also a composition of continuous functions. Therefore r is a homeomorphism, proving the claim.

References

- John Bolton and Lyndon M. Woodward, The space of harmonic two-spheres in the unit foursphere, Tohoku Math. J. (2) 58 (2006), no. 2, 231–236. MR 2248431 (2007g:53070)
- James Dugundji, Topology, Allyn and Bacon Inc., Boston, Mass., 1978, Reprinting of the 1966 original, Allyn and Bacon Series in Advanced Mathematics. MR 0478089 (57 #17581)
- John L. Kelley, General topology, Springer-Verlag, New York, 1975, Reprint of the 1955 edition [Van Nostrand, Toronto, Ont.], Graduate Texts in Mathematics, No. 27. MR 0370454 (51 #6681)
- Luc Lemaire and John C. Wood, Jacobi fields along harmonic 2-spheres in 3- and 4-spheres are not all integrable, Tohoku Math. J. (2) 61 (2009), no. 2, 165–204. MR 2541404 (2010g:53117)
- A. I. G. Vardulakis and P. N. R. Stoyle, *Generalized resultant theorem*, J. Inst. Math. Appl. 22 (1978), no. 3, 331–335. MR 516552 (80e:12025)

5

Luis Fernández Department of Mathematics CUNY – BCC 2155 University Avenue Bronx, New York 10453, USA *lmfernand@gmail.com luis.fernandez01@bcc.cuny.edu*