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Abstract

We discuss recent progress in the study of the space of harmonic maps from the 2-
sphere to the unit n-sphere in Euclidean (n + 1)-space. We consider the structure of
this space as an algebraic variety, the existence of non-manifold points in this space,
and the relation between this question and the integrability of Jacobi fields along
harmonic maps. One of the main tools used is that of the twistor lift of a harmonic
map, which which replaces a harmonic map by a holomorphic horizontal map into a
Kähler manifold.
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1 Introduction

A smooth map φ : M → W between Riemannian manifolds M and W is harmonic if it is
an extremal of the energy functional. Here, the energy E(φ) of a smooth map φ : M → W
between compact Riemannian manifolds is given by

E(φ) =
1

2

∫
M

|dφ|2ω , (1)

where ω is the volume form on M and |dφ| is the Hilbert-Schmidt norm of dφ given at
each point by

|dφx|2 =
∑

i

〈dφx(ei), dφx(ei)〉

for any orthonormal basis {ei} of the tangent space TxM of M at x. Equivalently, the map
φ is harmonic if it satisfies the Euler–Lagrange equations for the energy functional. These
equations may be expressed as τ(φ) = 0, where τ(φ) is a vector field along the map called
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the tension field, which is defined by τ(φ) = trace∇dφ. Here ∇ denotes the connection
on the bundle T ∗M ⊗ φ−1TW induced from the Levi-Civita connections on M and W .
For more details and an extensive survey of harmonic maps, with many references, see the
articles [16, 18].

From now on, we assume that M is 2-dimensional. In this case, E(φ), and hence
harmonicity of φ, depends only on the conformal structure of M , and, if φ is conformal,
the energy is equal to the area of the image of φ. If the domain surface M is the unit
sphere S2 in R3, then an argument due to Hopf [32] involving holomorphic differentials
shows that a non-constant harmonic map φ from S2 is weakly conformal, and hence a map
φ from S2 is harmonic if and only if it is a minimal branched [30] immersion.

The case of harmonic maps from S2 to the unit sphere Sm in Rm+1 has a long history
which contains many beautiful and interesting results (see, for example, [10, 13, 14, 2]).
Although this is a special case of the more general case of harmonic maps of a Riemann
surface into Sm, for reasons to do with the general theory of singularities of harmonic maps
[42, 43], it is arguably the most important case. It also has a wealth of interesting features.
For instance [13], the area of the image of a harmonic 2-sphere in Sm has area 4πd for
some integer d. Further, if the map is full, that is to say its image is not contained in a
proper vector subspace of Rm+1, then m = 2n for some integer n, and d ≥ n(n+ 1)/2.

In 1975, Lawson [35] posed the problem of studying the structure of the space
Harmd(S

2, S2n) of harmonic maps of S2 into S2n with induced area 4πd. In the present
article, we shall give a brief survey of some recent results we have obtained in this area; it
may be regarded as a sequel to [6], which appeared in the report of the first Mathematical
Society of Japan International Research Institute held at Tohoku University in 1993.

It was conjectured in [6] that Harmd(S
2, S2n) is a complex algebraic variety of dimension

2d+n2, and this was proved by Fernández in 2006. We give a brief account of the method
of proof in Section 7.

At the 1993 MSJ conference, Leon Simon asked about the singular points of the al-
gebraic variety Harmd(S

2, S2n). It is not hard to show that a non-full harmonic 2-sphere
which is the limit of a 1-parameter family of full ones is singular, but the question of
whether any full harmonic maps are singular points remains. In [9], it is shown that the
space Harmfull

d (S2, S4) of full harmonic 2-spheres of area 4πd in S4 is a manifold for d ≤ 5,
while recent work of Bolton and Fernández, see Section 4, shows that Harmfull

6 (S2, S4) is
also a manifold. As the case d = 6 is somewhat different from d < 6, see Section 8, this is
perhaps rather a surprising result.

One way of understanding the space of harmonic maps is to look at their infinitesimal
deformations, or Jacobi fields ; in particular, if they are all integrable, the space of harmonic
maps is a manifold with the Jacobi fields giving the tangent spaces. For m = 4, this has
been recently addressed by Lemaire and Wood [38], and a brief account of this work is
given in Section 8. The paper ends with applications of this to calculating the nullity of
the energy, and a comparision with the nullity of the area functional.

Remark 1 Similar questions may be asked about the space of harmonic 2-spheres in com-
plex space forms. This has been studied in [15, 36] for the case of harmonic 2-spheres in
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CP 2. In this case, the components of this space consist of the holomorphic and antiholo-
morphic maps of degree ±d and energy 4π|d|, together with harmonic maps of degree d and
energy 4πE, where E = 3|d| + 4 + 2r for some non-negative integer r. It is shown in [36]
that these components are smooth manifolds, of dimension 6|d|+4 in the holomorphic and
antiholomorphic cases and 2E + 8 in the other cases; in [37] it is shown that the tangent
bundle is given precisely by the Jacobi fields.

As in the talk on which it is based, the aim of this article is to give an overview and a
flavour of the topic. The interested reader should refer to the papers cited in the text for
further details.

2 Early results

It is clear from the characterization of harmonic 2-spheres in Sm as minimal branched
immersions that all great 2-spheres are harmonic. Rather more interestingly, we recall
that for each positive integer d, the space Harmfull

d (S2, S2n) of full harmonic 2-spheres in
S2n of area 4πd is non-empty for each d ≥ n(n+ 1)/2.

In fact, some interesting special cases were studied in 1933 by Boruvka [10], who found

full harmonic 2-spheres of constant curvature K =
2

n(n+ 1)
in S2n. The particular case

of n = 2 gives the Veronese surface in S4, given by

φ(x, y, z) =

(
xy, xz, yz,

1

2
(x2 − y2),

x2 + y2 − 2z2

2
√

3

)
, x2 + y2 + z2 = 3.

These Boruvka spheres all have the smallest possible area among full harmonic 2-spheres
in S2n, namely 4πn(n+1)/2. However, in 1975 Barbosa [2] gave examples of full harmonic
2-spheres in S2n of area 4πd for each d ≥ n(n + 1)/2. Barbosa also showed that if d =
n(n+ 1)/2, then Harmfull

d (S2, S2n) = O(2n+ 1; C).
The space Harmd(S

2, S2) consists of those maps from S2 to itself which are holomorphic
(d ≥ 0) or antiholomorphic (d ≤ 0) of degree d, while there are no full harmonic 2-spheres
in S3. Thus the first case where there are full harmonic maps of interest is Harmd(S

2, S4),
which may be studied using the the twistor fibration described in the next section.

3 The twistor fibration

We first recall the definition of the twistor fibration π : CP 3 → S4. Regarding H2 as a left
quaternionic vector space, this is obtained by composing the Hopf map ρ : CP 3 → HP 1

given by
ρ([z1, z2, z3, z4]) = [z1 + z2j, z3 + z4j],

with the canonical identification of HP 1 and S4 ⊂ H ⊕ R = R5 given by stereographic
projection of S4 from (0, 0, 0, 0,−1) onto the equatorial 4-plane H in R5 which is included
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in HP 1 by [q] 7→ [q, 1]. We recall [7, 11] that π is a Riemannian submersion when CP 3 is
given the Fubini-Study metric of constant holomorphic sectional curvature 1.

A map into CP 3 is said to be horizontal if its image is everywhere orthogonal to the
fibres of π, and full if its image is not contained in a totally geodesic CP 2. It is easy to
see that if ψ : S2 → CP 3 is holomorphic and horizontal then π ◦ ψ is harmonic, but the
crucial result, as formulated by Bryant [11], is that:

Theorem 1 Every full harmonic map φ : S2 → S4 is given by

φ = ±(π ◦ ψ) (2)

for some uniquely-determined full horizontal holomorphic map ψ : S2 → CP 3. Every non-
full (and hence totally geodesic) harmonic map φ : S2 → S4 is the projection of a unique
horizontal totally geodesic CP 1 in CP 3.

We call the sign in (2) the spin of φ. In some sense, this result reduces the study
of Harm(S2, S4) to that of the space HHol(S2,CP 3) of horizontal holomorphic maps ψ :
S2 → CP 3. As we shall see below, the latter space is much easier to work with, as it is
contained in the projectivization of a finite-dimensional vector space.

With the above as motivation, we now give an elementary description of the elements
of HHol(S2,CP 3). Regarding S2 as C ∪ {∞} in the usual way, a map ψ : S2 → CP 3 is
holomorphic if and only if it may be written as

ψ(z) = [f1(z), f2(z), f3(z), f4(z)] (3)

where f1(z), . . . , f4(z) are polynomials which we may assume have no common zeros. The
degree d of ψ is then the maximum of the degrees of the polynomials f1(z), . . . , f4(z).

In this way, we identify the space Hold(S
2,CP 3) of holomorphic 2-spheres of degree d

in CP 3 with the projectivization of a dense open subset V of the vector space (C[z]d)
4,

where C[z]d is the vector space of complex polynomials in z with degree less than or equal
to d. It is easy to see [11] that a map of the form (3) is horizontal if and only if

f1f
′
2 − f ′1f2 + f3f

′
4 − f ′3f4 = 0, (4)

in which case the corresponding harmonic map φ = π ◦ ψ has area 4πd.

4 The structure of HHold(S
2,CP 3)

It follows from the previous section that HHold(S
2,CP 3), and hence Harmd(S

2, S4), may be
given the structure of a complex algebraic variety in the projectivization of the vector space
(C[z]d)

4. By counting the number of constraints imposed by the horizontality condition
(4), one might expect that the dimension of this algebraic variety should be

4(d+ 1)− (2d− 1)− 1 = 2d+ 4.

This was confirmed independently by Verdier and Loo [39, 45, 46, 47], who both made
a detailed study of this variety, and, in particular, proved the following.
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Theorem 2 (Verdier 1985, Loo 1989) For any positive integer d, Harmd(S
2, S4) is a con-

nected algebraic variety of dimension 2d+ 4. When d = 1, 2, it is irreducible; when d ≥ 3,
it has three irreducible components, namely the subset of non-full maps and the closures of
the subsets of full maps of positive and negative spin.

Of course, it is clear from the description above in terms of polynomials that
Harmfull

d (S2, S4) is empty for d = 1, 2.
It is natural to ask if Harmd(S

2, S4) has any singular points. Non-full harmonic 2-
spheres in S4 which are the limits of a 1-parameter family of full ones are singular (see
Section 8); on the other hand, it is shown in [9] that Harmfull

d (S2, S4) has no singular
points for d ≤ 5 and hence is a manifold. This uses the twistor correspondence described
in Section 3 to identify Harmfull(S2, S4) as a double cover of HHolfull(S2,CP 3); in [5], it is
shown that that the compact-open topology on Harmfull(S2, S4) coincides with that coming
from the complex algebraic variety structure on HHolfull(S2,CP 3). In fact, Lemaire and
the third author [38, §2] have shown that the correspondence is real analytic.

We now outline a proof of the fact that Harmfull

d (S2, S4) has no singular points for
d ≤ 5, since the techniques will be useful later on. We let V0 be the dense open subset
of V consisting of quadruplets of linearly independent polynomials. The condition (4) for
horizontality motivates our definition of

Q : V0 → C[z]2d−2

as
Q(f1, . . . , f4) = f1f

′
2 − f ′1f2 + f3f

′
4 − f ′3f4 . (5)

We hope to show that the zero polynomial in C[z]2d−2 is a regular value of Q, so that
Q−1(0) is a manifold. Since HHolfull

d (S2,CP 3) may be identified with the projectivization of
Q−1(0), it then follows that HHolfull

d (S2,CP 3), and hence its double cover Harmfull

d (S2, S4),
is a manifold, in fact, by [38] a real-analytic submanifold of a suitable space of smooth
mappings from S2 to S4.

However, the dimensions of the spaces involved are quite high! For instance, if d = 5
then the domain has dimension 24 and the codomain 9, so verifying that dQ has maximal
rank at all points of Q−1(0) is quite daunting.

We now describe how we may simplify the problem by using two natural group actions
on V0. Firstly, the standard action of the complexified symplectic group Sp(2,C) on C4

induces a natural action on V0 via Af(z) = A(f(z)), and Q is constant on the orbits of this
action. Secondly, for each positive integer k, a Möbius transformation µ = (αz+β)/(γz+δ)
induces a diffeomorphism µ̃ : C[z]k → C[z]k given by

(µ̃f)(z) = (γz + δ)k(f(µ(z)).

This, in turn, induces a diffeomorphism, also denoted µ̃, from V0 to V0. It is easily checked
that if f = (f1, f2, f3, f4) ∈ V0, then

Q(µ̃f) = (αδ − βγ)µ̃(Qf),
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so that the rank of dQ at f is equal to the rank of dQ at Aµ̃f .
This reduces the problem to showing that the rank of dQ is maximal at certain special

elements of V0. For instance, for d = 4 it is shown in [8] that if f ∈ V0 satisfies (4) then
there exists a Möbius transformation µ and an element A of Sp(2,C) such that

A(µ̃f)(z) = (1, 2z4,−4z, z3).

Hence it is enough to show that dQ has maximal rank at

(f1(z), f2(z), f3(z), f4(z)) = (1, 2z4,−4z, z3),

and this is easy to see.
For d = 5 it turns out to be sufficient to consider the case

(f1(z), f2(z), f3(z), f4(z)) = (a0 + a1z, b4z
4 + b5z

5, c1z + c2z
2, d3z

3 + d4z
4),

where horizontality reduces to the system of equations:

2a0b4 + c1d3 = 0,

5a0b5 + 3a1b4 + 3c1d4 + c2d3 = 0,

2a1b5 + c2d4 = 0.

This was done by Bolton and Woodward [8], who thus showed that Harmfull

5 (S2, S4) is
a manifold.

The third author of this article pointed out that the case d = 6 may be worth inves-
tigating because some harmonic 2-spheres of degree 6 in S4 are the limits of sequences of
harmonic 2-spheres which are full in S6, and hence are not regular points of Harm6(S

2, S6).
Taking up the challenge, and using similar methods (and, initially, Mathematica) the first
two authors of this article have proved that Harmfull

6 (S2, S4) is a manifold. In line with the
method used for d = 4 and d = 5, the crucial simplifying result is the following.

Proposition 1 Let f ∈ V0 Then there exists a Möbius transformation µ and an element
A of Sp(2,C) such that

A(µ̃f)(z) = (a0 + a1z + a2z
2, b4z

4 + b5z
5 + b6z

6, c1z + c2z
2 + c3z

3, d3z
3 + d4z

4 + d5z
5),

or

A(µ̃f)(z) = (a0 + a1z + a2z
2, b4z

4 + b5z
5 + b6z

6, c1z + c2z
2 + c4z

4 + c5z
5, d3z

3),

with, in both cases, a0b6 6= 0, and, in the second case, d3 6= 0, and where both right hand
sides satisfy (4).
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5 Full harmonic maps from S2 to even-dimensional

spheres.

As mentioned earlier, if a harmonic maps from S2 to a sphere is full, then the codomain
sphere is even-dimensional [13]. The study of harmonic maps from S2 to S2n for general
n has many common features with the case n = 2. The twistor fibration explained above
is a particular case of the general construction that appeared in [13, 2]. Recall that the
twistor space of the 2n-sphere, denoted Zn, is defined as the subvariety of Gr(n,C2n+1) (the
Grassmanian of n-dimensional subspaces in C2n+1) consisting of totally isotropic subspaces
with respect to the complex-bilinear extension of the usual dot product. In other words,

Zn = {P ∈ Gr(n,C2n+1) : (u,v) = 0 ∀u,v ∈ P},

where (u,v) =
∑2n+1

i=1 uivi for u = (u1, · · · , u2n+1) and v = (v1, · · · , v2n+1) in C2n+1.
There is a projection π : Zn → S2n defined as follows: given P ∈ Zn, and {E1, . . . , En}

an orthonormal basis of P , π(P ) is defined as the (unique) real vector such that the basis
of C2n+1 given by {π(P ), E1, . . . , En, E1, . . . , En} is orthonormal and positively oriented.

As in the n = 2 case, we have the following [2, 13, 27]:

• Given a harmonic and full map φ : S2 → S2n there exists a unique holomorphic and
horizontal map ψ : S2 → Zn (the twistor lift of φ) such that π ◦ ψ is either φ or −φ.

• Conversely, if ψ : S2 → Zn is holomorphic, horizontal and full, then π ◦ψ : S2 → S2n

is harmonic and full.

• The area of φ(S2) is equal to 4πd, where d is the algebraic degree of ψ (or equivalently,
the image of 1 ∈ Z ' H2(S

2,Z) under the map ψ∗ : H2(S
2,Z) → Z ' H2(Zn,Z)).

An immediate consequence of this is that Harmfull

d (S2, S2n) (i.e. the set of harmonic,
full maps from S2 to S2n) can be identified with two copies of HHolfull

d (S2,Zn), where
HHolfull

d (S2,Zn) denotes the variety of holomorphic, horizontal, full maps of degree d from
S2 to Zn.

Therefore, from now on, we will concentrate in the study of HHolfull

d (S2,Zn). For the
particular case of n = 2, recall that Z2 is just CP 3, and that the horizontality condition,
written in homogeneous coordinates in CP 3, is given by equation (4).

For general n, it is certainly not the case that Zn is isomorphic to a complex projective
space. However, the variety Zn is birationally equivalent to CP n(n+1)/2 (note that the
dimension of Zn is n(n + 1)/2). The idea would then be: Fix a birational map b from
CP n(n+1)/2 to Zn. Then, for each ψ ∈ HHolfull

d (S2,Zn), define the map b−1 ◦ ψ : S2 →
CP n(n+1)/2. This should give some variety of maps from S2 into CP n(n+1)/2 satisfying some
sort of ‘horizontality’ condition. Then, instead of studying ψ ∈ HHolfull

d (S2,Zn), study the
set of such maps.

Of course this is all wishful thinking: the idea of the previous paragraph, although
plausible, is full of obstacles. Several things can go wrong:
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1. Since a birational map is only defined outside of a codimension 2 subvariety, the map
b−1 ◦ψ will not be defined at all if the image of ψ lies entirely in the subvariety where
b−1 is not defined.

2. The horizontality condition in Zn will translate into some condition for maps into
CP n(n+1)/2. But this condition may be much harder to work with than the original.

3. Even if b−1 ◦ ψ is defined, we also have to take into account that we want the degree
of maps to be preserved. In other words, if the degree of b−1 ◦ ψ is not the same as
the degree of ψ we will not be able to study the variety HHolfull

d (S2,Zn).

Fortunately all the possible things that can go wrong either go right or not terribly wrong.
But, before giving the answer to these questions, we need to give an explicit description of
some birational maps between Zn and CP n(n+1)/2.

Given an orthonormal basis (with respect to the canonical Hermitian product) β =
{E0, E1, . . . , En, E1, . . . , En} of C2n+1, define a birational map bβ : CP n(n+1)/2 → Zn by

[s : α1 : · · · : αn : τ12 : · · · : τn−1,n]
bβ−→


n− plane generated by the vectors

α`

s
E0 + E` +

n∑
k=1

(
−α`αk

2s2
+
τ`k
2s

)
Ek, 1 ≤ ` ≤ n

 .

Then, given ψ ∈ HHolfull

d (S2,Zn) the idea would be to define the map ψ̃β = b−1
β ◦ ψ : S2 →

CP n(n+1)/2 and study its properties. The questions about what can go wrong are solved as
follows:

1′. The image of ψ cannot lie in the subvariety of Zn where b−1
β is not defined. A complete

proof of this appears in [24]. The key ingredient of the proof is that the map ψ is
full.

2′. The fact that the map ψ is horizontal translates into the following relatively nice
differential system:

Writing a map from S2 to CP n(n+1)/2 as [s : α1 : · · · : αn : τ12 : · · · : τn−1,n]
(in homogeneous coordinates), the fact that ψ is horizontal translates into the map
b−1
β ◦ ψ : S2 → CP n(n+1)/2 satisfying the differential system given by

α′
iαj − αiα

′
j = sτ ′ij − s′τij, 1 ≤ i, j ≤ n, (6)

where, as usual, the dashes denote differentiation with respect to a conformal param-
eter on S2. Note that this reduces to equation (4) when n = 2.

This differential system was actually found by Bryant in [12], although in a different
form. It also appears in [31] in the form presented here.

3′. There are examples for which the degree of b−1
β ◦ ψ is not equal to the degree of ψ.

Although for most maps the degree is the same, since we are trying to study the set
of all holomorphic and horizontal maps into Zn, it seems that the original idea will
not work. However, this problem can be overcome as follows.
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Define the varieties

PDfull

d (S2,CP n(n+1)/2) =

{
maps [s : α1 : . . . αn : τ12 : · · · : τn−1,n] : S2 → CP n(n+1)/2

holomorphic of degree d satisfying α′
iαj − αiα

′
j = sτ ′ij − s′τij, and

(αi

s

)′
independent

}
.

Notice that, since these are maps from S2 to CP n(n+1)/2 of degree d, each homogeneous
component of one such map can be regarded as a polynomial of degree d in one complex
variable z. We define the following open subset of PDfull

d (S2,CP n(n+1)/2):

PDfull

d,0(S
2,CP n(n+1)/2) =

{
[s : α1 : . . . ] ∈ PDfull

d (S2,CP n(n+1)/2) with

s =
d∏

`=1

(z − s`), s` distinct, and α1(s`) 6= 0, ∀`
}
.

The following proposition gives the key for the subsequent study of HHolfull

d (S2,Zn). The
proof is long and technical; details can be found in [26].

Proposition 2 For all ψ0 ∈ HHolfulld (S2,Zn), there exists a birational map bβ and an open
set Uβ ⊂ HHolfulld (S2,Zn) with ψ0 ∈ Uβ such that the map

ψ ∈ Uβ ⊂ HHolfulld (S2,Zn) −→ ψ̃β = b−1
β ◦ ψ ∈ PDfull

d,0(S
2,CP n(n+1)/2)

is an algebraic isomorphism.

In other words, although PDfull

d,0(S
2,CP n(n+1)/2) is really not isomorphic to HHolfull

d (S2,Zn),
we can completely cover the latter variety with patches algebraically isomorphic to the
former.

6 An algebraic construction of harmonic maps from

S2 to S2n

In view of Proposition 2, in order to study local characteristics of HHolfull

d (S2,Zn) we
can study PDfull

d,0(S
2,CP n(n+1)/2) instead. To this end, we have to analyse the system

α′
iαj −αiα

′
j = sτ ′ij − s′τij where s is a polynomial with d distinct roots sm, 1 ≤ m ≤ d, and

αi, τjk are polynomials of degree less than or equal to d, with α1(sm) 6= 0 for all m.
The obvious idea would be to write the polynomials in the usual basis, substitute into

system (6) and obtain algebraic equations on the coefficients. The equations obtained,
however, turn out to be too entangled and they are too hard to analyse.

Instead, one can write the polynomials as follows: since s has distinct roots sm, 1 ≤
m ≤ d, the polynomials {s, s

z−s1
, . . . , s

z−sm
} form a basis for the space of polynomials of
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degree d. Thus we can write

s =
d∏

m=1

(z − sm) , αi = ai0s+
d∑

m=1

aim
s

z − sm

, τij = tij0s+
d∑

m=1

tijm
s

z − sm

.

Using this representation, the system (6) turns into the following algebraic equations (see
[26] for details):

aim

∑
k 6=m

ajk

(sm − sk)2
− ajm

∑
k 6=m

aik

(sm − sk)2
= 0, 1 ≤ m ≤ d (7)

and

τij = tij0s+ s

∫
α′

iαj − αiα
′
j

s2
dz. (8)

(Equation (7) guarantees that the integrand in equation (8) has no residues and τij is a
polynomial of degree at most d.)

It is useful to write (7) in the following matrix form:
λ1

1
(s1−s2)2

· · · 1
(s1−sd)2

1
(s2−s1)2

λ2 · · · 1
(s2−sd)2

...
...

. . .
...

1
(sd−s1)2

1
(sd−s2)2

· · · λd



a11 a21 . . . an1

a12 a22 . . . an2
...

...
. . .

...
a1d a2d . . . and

 = 0, (9)

where λm = − 1

a1m

∑
k 6=m

a1k

(sm − sk)2
.

This approach immediately gives an interesting result: it provides an algebraic ‘recipe’
to construct any linearly full harmonic map from S2 to S2n (and hence any harmonic map
from S2 to a sphere): First find sm and α1m so that the nullity of the matrix

λ1
1

(s1−s2)2
· · · 1

(s1−sd)2
1

(s2−s1)2
λ2 · · · 1

(s2−sd)2

...
...

. . .
...

1
(sd−s1)2

1
(sd−s2)2

· · · λd

 (10)

(where λm = − 1
a1m

∑
k 6=m

a1k

(sm−sk)2
) is at least n. Then find aim, 2 ≤ i ≤ n, 1 ≤ m ≤ d, so

that equation (9) is satisfied, and so that the second matrix in that equation has maximal
rank (this will guarantee that the map is full). Then use equation (8) to find the τij and
follow the procedure above backwards to obtain a harmonic map. Of course, there will be
some free choices on the way, such as the choice of a basis β as explained in Section 5.
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7 Harmd(S
2, S2n(1)) has dimension 2d + n2.

In this section we sketch the proof of the following:

Conjecture (Bolton-Woodward, 1993, First MSJ International Research Institute, Tohoku
University [6]): Harmd(S

2, S2n(1)) is an algebraic variety of dimension 2d+ n2.

The algebraic construction of the previous section allows for a very detailed analysis of
the variety PDfull

d,0(S
2,CP n(n+1)/2). In particular, it is possible to give a constructive proof

that there is a 2d+ n2-dimensional variety inside PDfull

d,0(S
2,CP n(n+1)/2), which shows that

the dimension of PDfull

d,0(S
2,CP n(n+1)/2), and hence of Harmfull

d (S2, S2n), is at least 2d+ n2.
The main steps are as follows:

1. Show that the variety of those (s1, . . . , sd, λ1, . . . , λd) such that the matrix (10) has
nullity n has dimension at least 2d− n(n+ 1)/2 [26].

2. Assuming that the nullity of the matrix (10) is n, it is not hard to see that the
dimension of the set of solutions aim, 1 ≤ i ≤ n, 0 ≤ m ≤ d, of equation (9), is
n2 + n.

3. Finally, the τij are completely determined by (8), but each has one degree of freedom
(the tij0), giving n(n− 1)/2 dimensions more.

4. Add up: 2d − n(n + 1)/2 + n2 + n + n(n − 1)/2 = 2d + n2, as desired. Hence
dim(Harmfull

d (S2, S2n)) ≥ 2d+ n2.

To finish the proof of the conjecture stated at the beginning of the section, it only
remains to show that Harmfull

d (S2, S2n) has dimension at most 2d + n2. This is actually
easier, and it was essentially known to Bolton and Woodward. It was also proved by Kotani
(see the last corollary in [34]). Another proof of this fact, using different techniques, appears
in [25] for the particular case n = 3.

The proof we sketch here is very similar to that in [34], but we use the algebraic con-
struction explained above. The key point is to note that there are well-defined projections

pn : PDfull

d,0(S
2,CP n(n+1)/2) → PDf

d,0(S
2,CP (n−1)n/2),

defined by deleting the αn+1 and the τi,n+1:

pn([s : α1 : · · · : αn : τ12 : · · · : τn−2,n−1 : τ1,n · · · : τn−1,n])

= [s : α1 : · · · : αn−1 : τ12 : · · · : τn−2,n−1]).

This map has the following properties:

• Its image has codimension at least 1. This is expected but not quite trivial. See [26]
for the detailed proof.
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• The fibre over a generic point has dimension at most 2n. This is not hard to see if we
look at equation (9). The points in the fibre are essentially those αn such that the
vector (an1, . . . , and) is in the kernel of the matrix (9). Since this matrix has nullity
n, we have n degrees of freedom. In addition, we have 1 degree of freedom from the
choice of an0 and n − 1 degrees of freedom from the choice of tin0, 1 ≤ i ≤ n − 1.
Therefore the fibre has dimension n+ 1 + (n− 1) = 2n.

Then proceed by induction on the dimension of PDfull

d,0(S
2,CP n(n+1)/2). Note that

PDf
d,0(S

2,CP 1), which corresponds to the case n = 1, is the set of holomorphic maps

from S2 to CP 1 of degree d; this has dimension 2d+ 1, so of course the conjecture is true
in this case.

If the conjecture is true at level n− 1, then

dim(PDfull

d,0(S
2,CP n(n+1)/2)) ≤ dim(Image of pn) + dim(Fibre of pn)

≤ (dim(PDf
d,0(S

2,CP (n−1)n/2))− 1) + 2n

≤ 2d+ (n− 1)2 − 1 + 2n

= 2d+ n2,

as desired. Therefore we have proved the following.

Theorem 3 The (pure) dimension of Harmfull

d (S2, S2n) is 2d+ n2.

Maybe the curious thing about these proofs is that numbers match very well, but it is
not clear why things work (or at least the second author does not completely understand
why they work). There are also many relationships between the last part of this section
and integrability of Jacobi fields, as well as the extra eigenfunctions (see below) which
correspond, in our setting, to maps for which the matrix (9) has nullity greater than n.

8 The role of Jacobi fields

A Jacobi field is an infinitesimal deformation of a harmonic map. We can make this more
precise in two ways.

The first way is by means of the the second variation as follows. Let φ : M → W be a
harmonic map between compact Riemannian manifolds. Let v, w be vector fields along φ,
i.e, v, w ∈ Γ(φ−1TW ). Choose a smooth two-parameter variation {φt,s} of φ with

∂φt,s

∂t

∣∣∣∣
(t,s)=(0,0)

= v and
∂φt,s

∂s

∣∣∣∣
(t,s)=(0,0)

= w ;

then the second variation or Hessian of the energy at φ is defined by

Hφ(v, w) =
∂2

∂t ∂s
E(φt,s)

∣∣∣∣
(t,s)=(0,0)

.
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It is given by the second variation formula (see, for example, [17]):

Hφ(v, w) =

∫
M

〈Jφ(v), w〉ωg

where Jφ : Γ(φ−1TW ) → Γ(φ−1TW ) is the self-adjoint linear operator defined by

Jφ(v) = ∆φv − TrRW(dφ, v) dφ .

Here ∆φ denotes the Laplacian on φ−1TW and RW the curvature operator of W (conven-
tions as in [17]). The operator Jφ is called the Jacobi operator ; a vector field v ∈ Γ(φ−1TW )
is called a Jacobi field if it satisfies the Jacobi equation Jφ(v) = 0. By standard elliptic
theory, the set ker Jφ of Jacobi fields along a given harmonic map is a finite-dimensional
vector subspace of Γ(φ−1TW ).

A second way to understand the Jacobi operator is as (minus) the linearization of the
tension field as follows (see [37]).

Proposition 3 Let φ : M → W be harmonic and let v ∈ Γ(φ−1TW ). Let {φt} be a
smooth (one-parameter) variation of φ which is tangent to v, i.e., with ∂φt/∂t|t=0 = v.
Then

Jφ(v) = − ∂

∂t
τ(φt)

∣∣∣∣
t=0

, (11)

i.e., the components of each side with respect to a local frame on φ−1TW satisfy Jφ(v)
α =

−(∂/∂t)τ(φt)
α|t=0 (α = 1, . . . ,m).

Thus v is a Jacobi field along φ if and only if

τ(φ) = 0 and
∂

∂t
τ(φt)

∣∣∣∣
t=0

= 0 . (12)

Note that equation (11) and condition (12) are independent of the local frame chosen.
We shall call a smooth variation {φt} harmonic to first order if it satisfies condition (12).
Thus a smooth variation {φt} of a harmonic map φ is harmonic to first order if and only
if it is tangent to a Jacobi field along φ.

In particular, if {φt} is a smooth variation of φ with each φt harmonic, its variation
vector field v = ∂φt

/
∂t|t=0 is a Jacobi field. We now ask whether every Jacobi field arises

this way; to discuss this, we make the following definition.

Definition 1 A Jacobi field v along a harmonic map φ : M → W is called integrable if
it is tangent to a smooth variation {φt} of φ through harmonic maps, i.e., there exists a
one-parameter family {φt} of harmonic maps with φ0 = φ and ∂φt

/
∂t|t=0 = v.

Proposition 4 [1] Let φ : M → W be a harmonic map between compact real-analytic
Riemannian manifolds. Then all Jacobi fields along φ are integrable if and only if the
space of harmonic maps (C2,α-)close to φ is a smooth manifold whose tangent space at φ
is exactly the space ker Jφ of Jacobi fields along it .
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The converse is false: there are examples where the space of harmonic maps is a smooth
manifold, but the space of Jacobi fields contains non-integrable ones which are not in a
tangent space, see [37] and below.

Now, to analyse Jacobi fields along harmonic maps from S2 to Sm, one idea is to use
the twistor construction to replace them with infinitesimal deformations of the twistor
lift. This works well in the case m = 4, as we now describe. Given a holomorphic map
ψ : S2 → CP 3, we call a vector field u along ψ an infinitesimal horizontal holomorphic
deformation (IHHD) if it is holomorphic, i.e, tangent to a curve of holomorphic maps, and
preserves horizontality ‘to first order’. Representing ψ by a quadruplet of polynomials as
in Section 3, f = (f1, f2, f3, f4) : C → C4 \ {0} so that u is represented by a holomorphic
map U : C → C4, the latter condition reads

dQf (U) = 0 . (13)

Given an infinitesimal horizontal holomorphic deformation u of ψ, it is easy to see from
the composition law for harmonic maps [16, §4] that v = dπ ◦ u is a Jacobi field along
φ = π ◦ ψ. The inverse construction is harder because of the presence of branch points,
however, we can show [38]:

Proposition 5 Let φ : S2 → S4 be a full harmonic map with twistor lift ψ : S2 → CP 3.
Then setting v = dπ ◦ u defines a one-to-one correspondence between IHHDs u of ψ and
Jacobi fields v along φ.

This reduces the problem of finding Jacobi fields along φ to solving equation (13). In
particular, we see that, if Q has maximal rank at F , then, not only is the space of harmonic
maps a smooth manifold at φ = π ◦ ψ, but also the Jacobi fields along φ are all integrable
and form the tangent space to that manifold at φ. If Q does not have maximal rank, then
there will be non-integrable Jacobi fields along φ.

As we saw earlier, if d ≤ 6 then Q is always submersive, so that all Jacobi fields are
integrable and form the tangent space to the smooth manifold Harmfull

d (S2, S4).
It is not known whether Proposition 5 generalizes to higher dimensions; the argument

establishing extension over branch points is special to four dimensions. Note that for any
m ≥ 4, d ≥ 3, the space of all (i.e. full and non-full) harmonic maps from S2 to Sm is
not a manifold — indeed, harmonic maps can collapse to a non-full harmonic map, see the
work of N. Ejiri and M. Kotani [20, 21, 22, 34]. For d ≥ 3, some non-full maps S2 → S4

are the limits of a family of full harmonic maps into S4, we shall call such maps collapse
points ; see [38] for an analysis of those, especially for d < 6. When d ≥ 6, a non-full map
might also occur as the limit of full maps into higher-dimensional spheres; see [34] for some
results on collapsing in higher dimensions.

Let φ be a non-full (non-constant) harmonic map from S2 to Sm with m = 3 or 4; we
examine the Jacobi fields along φ. Note first that φ has image in a totally geodesic S2.
From this, it is easy to see that the space of non-full maps is a smooth manifold. Now any
Jacobi field along such a map decomposes into components tangential and normal to the
image S2. The tangential component is a conformal vector field, so we concentrate on the

14



normal component. This may be tangent to the space of non-full maps; if it is not, then
it is called extra. Take a parallel basis for the normal bundle of the image S2. Then the
Jacobi equation assumes a simple form: a vector field along φ is Jacobi if and only if its
n− 2 components vi satisfy the generalized eigenvalue (Schrödinger) equation:

∆vi = |dφ|2vi .

The coordinate functions of φ considered as a map into R3 span a 3-dimensional space of
trivial solutions to this equation; any other solution is called an extra eigenfunction (of φ).
It is easy to see that a Jacobi field is extra if and only if at least one of its components is
an extra eigenfunction.

Now, it can be shown that a non-full harmonic map from S2 to S4 has an extra Jacobi
field v if and only if it is a collapse point. But then one of the components of v is an
extra eigenfunction; this gives an extra Jacobi field of φ considered as a map into S3 which
cannot be integrable, since all harmonic maps into S3 are non-full. So we see that the
space of harmonic maps from S2 to S3 is a smooth manifold, however those harmonic maps
S2 → S3 which are collapse points when considered as maps into S4 have non-integrable
Jacobi fields.

Thus, integrability of all Jacobi fields implies that the space of harmonic maps is a
smooth manifold, but not conversely.

9 Area and nullity

The nullity of (the energy) of a harmonic map is the real dimension of the space of Jacobi
fields along it. Since the Jacobi fields are the solutions to equation (13), we obtain

Theorem 4 Let φ : S2 → S4 be a harmonic map of twistor degree d. Then the nullity of
φ is greater than or equal to 4d+ 8 with equality if and only if φ is a regular point of Q.

Recalling the results of Bolton–Woodward and Bolton–Fernández cited in Section 3,
we deduce:

Corollary 1 The nullity of a full harmonic map φ : S2 → S4 of degree ≤ 6 is exactly
4d+ 8.

We can consider instead the second variation of the area. This depends only on normal
vector fields. Results of N. Ejiri and M. Micallef [23] imply that, for any non-constant
harmonic map from the 2-sphere, the map v 7→ the normal component of v is a surjective
linear map from the space of Jacobi fields for the energy to the space of Jacobi fields for
the area, with kernel the tangential conformal fields.

S. Montiel and F. Urbano [40, Corollary 7] show that the nullity of the (second variation
of the) area of a (full or non-full) minimal immersion of S2 in S4 of twistor degree d is
exactly 4d + 2. Since the tangential conformal fields form a space of (real) dimension 6,
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the nullity of the energy is precisely 4d+ 8; we deduce that any immersive harmonic map
is a regular, and so a smooth, point of Harmd(S

2, S4).
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