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Abstract

A harmonic map of the Riemann sphere into the unit 4-dimensional sphere has area
4πd for some positive integer d, and it is well-known that the space of such maps
may be given the structure of a complex algebraic variety of dimension 2d+4. When
d less than or equal to 2, the subspace consisting of those maps which are linearly
full is empty. The twistor fibration from complex projective 3-space to the 4-sphere
has been used to show that, for d = 3, 4, 5, this subspace is a complex manifold.
These methods are used here to extend this result to d = 6.

1 Introduction

Every harmonic map from the Riemann sphere S2 into the unit 4-sphere S4 has area 4πd

for some integer d. It has been known for some time [6, 7, 12] that the space Harmd(S
4)

of such maps may be studied in terms of the twistor lifts of the elements to horizontal

holomorphic curves of degree d in complex projective 3-space CP 3. It follows from this

that Harmd(S
4) may be given the structure of a complex algebraic variety, and a detailed

study of this space has been carried out in [13, 17, 18, 19], where, in particular, it is

shown that the complex dimension is 2d + 4. This result is a special case of the recent

verification in [10] of the conjecture in [2] that the moduli space of harmonic maps of S2

into S2m of degree d is a complex algebraic variety of dimension 2d+m2.

A natural topology to put on Harmd(S
4) is the compact-open topology, and it is shown

in [5] that this topology coincides with that coming from the complex algebraic variety

structure. Using the twistorial approach mentioned above, it was also shown in [5] that, in
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this topology, the open subset HarmLF
d (S4) of Harmd(S

4) consisting of linearly full maps

has no singular points for d ≤ 5, so that HarmLF
d (S4) is a manifold.

We were encouraged to use the approach of [5] to consider the case d = 6, since it

seemed possible (and even likely) that HarmLF
6 (S4) would have singular points. Indeed,

non-linearly full elements of Harmd(S
4) which are the limit of linearly full harmonic 2-

spheres are singular points of Harmd(S
4), and, when d ≥ 6, there are linearly full harmonic

2-spheres in S4 of degree d which are the limit of linearly full harmonic 2-spheres in higher-

dimensional spheres (see [11] for some results on collapsing in higher dimensions, and see

[16] for a study of the related problem of when all Jacobi fields along a harmonic 2-sphere

are integrable). However, in this paper we show that the moduli space HarmLF
6 (S4) is a

manifold. Specifically, we prove the following theorem.

Theorem 1.1. For 3 ≤ d ≤ 6, the space HarmLF
d (S4) equipped with the compact-open

topology, is a complex manifold of complex dimension 2d+ 4. For d ≤ 2, HarmLF
d (S4) is

empty.

Unfortunately, it seems unlikely that our methods will enable us to draw conclusions

for higher values of d. Firstly, it is not clear how to extend Proposition 4.3 to degree

greater than 6, and, secondly, the ad hoc mathematica calculation of the rank of the map

dΦd carried out in Section 5 is likely to be considerably more complicated. It may be,

however, that there is a more systematic way of carrying out this calculation using, for

example, the notion of discriminant. As remarked above, Theorem 1.1 was proved in [5]

for d ≤ 5.

Similar questions for the space of harmonic maps from S2 to CP 2 have been studied in

[8] and [14]. In fact, the components of this space consist of the ±-holomorphic maps of

degree d, together with harmonic maps of degree d and energy 4πE, where E = 3|d|+4+2r

for some non-negative integer r. It is shown in [14] (see also [15]) that these components

are smooth manifolds of dimension 6|d|+ 4 in the ±-holomorphic case and 2E + 8 in the

other cases.

2 The twistor fibration

We begin by recalling the twistor fibration π : CP 3 → S4. Regarding H2 as a left

quaternionic vector space, this is obtained by composing the Hopf map ρ : CP 3 → HP 1

given by

ρ([z1, z2, z3, z4]) = [z1 + z2j, z3 + z4j],

with the canonical identification of HP 1 and S4 ⊂ H⊕R = R5 given in the usual way by

stereographic projection from (0, 0, 0, 0,−1) onto the equatorial 4-plane H in R5 which is
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included in HP 1 by [q] 7→ [q, 1]. Specifically, this identification is given by

[q1, q2] ∈ HP 1 ↔ (2q̄1q2, |q1|2 − |q2|2)
|q1|2 + |q2|2

∈ S4.

We recall [4, 6] that π is a Riemannian submersion when CP 3 is given the Fubini-Study

metric of constant holomorphic curvature 1.

Now consider the vector space C[z]d of polynomials of degree less than or equal to d,

and let Vd be the subset of (C[z]d)
4 consisting of those quadruplets of coprime polynomials

with maximum degree equal to d for which the map z 7→ [f1(z), f2(z), f3(z), f4(z)] is

linearly full in CP 3. Then Vd is a projective subset of (C[z]d)
4 \ {0}, and we identify its

projectivisation P (Vd) with the space of linearly full holomorphic maps of degree d from

S2 to CP 3 in the usual way via

(1) [f1, f2, f3, f4] ←→ z 7→ [f1(z), f2(z), f3(z), f4(z)].

Here, and subsequently, we use the complex coordinate z on S2 defined by sterographic

projection from the south pole of S2 onto the equatorial plane so that, in the usual sense,

we may identify S2 with C∪{∞}. If ψ : S2 → CP 3 is holomorphic then we call the above

representation

ψ(z) = [f1(z), f2(z), f3(z), f4(z)]

with (f1, f2, f3, f4) ∈ Vd a reduced form of ψ.

We give (C[z]d)
4 its natural topology as a vector space, and P ((C[z]d)

4) the identi-

fication topology. Then Vd is an open subset of (C[z]d)
4, and P (Vd) is an open subset

of P ((C[z]d)
4). Subsets of any of these spaces are then given the induced (subspace)

topology.

A holomorphic curve ψ = [f1, f2, f3, f4] in CP 3 is horizontal if it intersects each fibre

orthogonally. It is well known [6] that this holds if and only if

f ′1f2 − f1f
′
2 + f ′3f4 − f3f

′
4 = 0,

or, alternatively, if and only if

(2) (f ′, Jf) = 0,

where f = (f1, f2, f3, f4) ∈ Vd, ( , ) denotes the complex bilinear extension to C4 of the

standard real inner product on R4, and

J(f1, f2, f3, f4) = (−f2, f1,−f4, f3).

Thus, if we define Φd : Vd → C[z]2d−2 by

Φd(f) = (f ′, Jf) ,
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then Φ−1
d {0} is a projective subset of Vd, and, using the identification (1) above, P (Φ−1

d {0})
is identified with the space of linearly full horizontal holomorphic maps of degree d (and

hence area 4πd) from S2 to CP 3.

The space HarmLF
d (S4) is the union of two connected components, Harm+

d (S4) and

Harm−d (S4), with post-composition by the antipodal map of S4 giving a homeomorphism

between them. Each element of Harm+
d (S4) has a unique lift to an element of P (Φ−1

d {0}),
so that post-composition by π gives a bijective correspondence

π∗ : P (Φ−1
d {0})→ Harm+

d (S4).

The following lemma is proved in [5].

Lemma 2.1. Harm+
d (S4) is a closed subset of HarmLF

d (S4), and the map π∗ : P (Φ−1
d {0})→

Harm+
d (S4) is a homeomorphism.

We note that the final statement of Theorem 1.1 follows immediately from Lemma

2.1, since Vd is empty for d ≤ 2.

3 Higher singularities and the Plücker formulae

We first recall the definition of singularity type of a linearly full holomorphic curve ψ :

S2 → CP n [9, 2, 3]. We may write such a curve in reduced form ψ(z) = [f(z)] =

[f1(z), . . . , fn+1(z)], where f1, . . . , fn+1 are polynomials in z with no common zeros. In

fact, f can be written in the following normal form about a point z0,

f(z) = h0(z)a0 + (z − z0)
r0(z0)+1h1(z)a1 + . . .+ (z − z0)

r0(z0)+...+rn−1(z0)+nhn(z)an

for some suitable choice of (unitarily orthonormal) basis a0, . . . , an of Cn+1, non-negative

integers r0(z0), . . . , rn−1(z0), and polynomials h0(z), . . . , hn(z), each non-zero at z0. The

point z0 is a higher singularity of ψ if rk(z0) 6= 0 for at least one k = 0, . . . , n− 1, and we

let Z(ψ) denote the isolated set of higher singularities. The singularity type of ψ is then

defined to be the set

{(z; r0(z), . . . , rn−1(z)) | z ∈ Z(ψ)}.

For each k = 0, . . . , n−1 the k-th osculating curve (or associated curve) of ψ is defined

for all z in the domain of ψ, and, away from Z(ψ), is given by [f ∧ . . . ∧ f (k)], where f (j)

denotes the j-th derivative of f with respect to z. If rk(z0) > 0 then the derivative of the

k-th osculating curve has a zero of order rk(z0) at z0.

In the next section we will use group actions to obtain canonical forms for linearly full

horizontal holomorphic 2-spheres in CP 3. We now move towards this by considering the

natural action on CP 3 of the complexified symplectic group

Sp(2; C) = {A : C4 → C4 | (JAv, Aw) = (Jv,w) ∀v,w ∈ C4}.
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In fact, the projectivisation PSp(2; C) of this group acts on CP 3 as the group of holo-

morphic diffeomorphisms which preserve the horizontal distribution, with PSp(2) =

PSp(2; C) ∩ PU(4) being the subgroup of holomorphic isometries which preserve the

horizontal distribution [4]. This induces a natural action of Sp(2; C) on Vd, and hence on

P (Vd) via (Af)(z) = A(f(z)), and this action preserves the set Φ−1
d {0}. We also note that

if µ is a Möbius transformation, and if ψ = [f ] is a holomorphic curve in CP 3, then ψµ is

also holomorphic. Moreover, ψ is horizontal if and only if ψµ is horizontal.

Lemma 3.1. Let g : Cn+1 → Cn+1 be a non-singular linear map, and µ(z) a Möbius

transformation. If ψ has singularity type {(z; r0(z), . . . , rn−1(z)) | z ∈ Z(ψ)} then gψµ

has singularity type {(µ−1(z); r0(z), . . . , rn−1(z)) | z ∈ Z(ψ)}.

The following proposition is proved in [3]. Here, v(f) denotes the order of vanishing

of a holomorphic function f(z) at z = 0.

Proposition 3.2. Let ψ(z) be a linearly full horizontal holomorphic curve in CP 3.

Then

r0(z) = r2(z).

Also, if ψ(z) has a higher singularity at z = 0 then there exists A ∈ Sp(2; C) such that

Aψ(0) = [1, 0, 0, 0] and if Aψ = [f1, f2, f3, f4] is in reduced form then v(f3) < v(f4). In

this case,

Aψ(z) = [h0(z), z2k1+k2h3(z), zk1h1(z), zk1+k2h2(z)],

where k1 = r0(0) + 1 = r2(0) + 1, k2 = r1(0) + 1 and hk(z), k = 0, 1, 2, 3, are polynomials

each of which is non-zero at z = 0.

As shown in [3], the Plücker formulae [9, 1] for a linearly full holomorphic curve

ψ : S2 → CP n imply that if ψ : S2 → CP 3 is a linearly full horizontal holomorphic curve

in CP 3 then

(3) 2r0 + r1 = 2d− 6,

where d is the degree of ψ, and

rk =
∑

p∈Z(ψ)

rk(p).

4 Canonical forms

The method of proof of Theorem 1.1 is to show that, for 3 ≤ d ≤ 6, the zero polynomial is

a regular value of Φd. It will then follow that Φ−1
d {0} is a submanifold of Vd of dimension
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4(d + 1) − (2d − 1) = 2d + 5, from which the theorem will follow by projectivising and

using Lemma 2.1.

We begin by writing down the derivative dΦd|f of Φd at a point f = (f1, . . . , f4) of

Vd. The unusual indexing on the left hand side is to facilitate the writing down of the

derivative.

(4) dΦd|f (h2, h1, h4, h3) =
4∑
p=1

(−1)p(fph
′
p − f ′php).

As mentioned earlier, Theorem 1.1 has already been proved in [5] for d ≤ 5, so from

now on we consider the case d = 6. In order to simplify the calculations we extend to

d = 6 the results of [3], where natural group actions are used to obtain canonical forms

for elements of P (Φ−1
d {0}) for 3 ≤ d ≤ 5. We recall from the previous section the action

of the complexified symplectic group on Vd and on the space of holomorphic horizontal

curves in CP 3 via (Af)(z) = A(f(z)). It is shown in [5] (and is easily checked) that

Lemma 4.1. If ψ = [f ] and if Aψµ = [̃f ], where A ∈ Sp(2; C) and µ is a Möbius

transformation, then the rank of dΦd|f is equal to the rank of dΦd|f̃ .

We now produce our canonical form for an element ψ = [f ] in P (Φ−1
6 {0}). It will be

convenient to recall the following definition from [3]. If z1, z2 ∈ S2 then we will say that

{z1, z2} is a ψ-null pair if (ψ(z1), Jψ(z2)) = 0, that is, if ψ(z1) is unitarily orthogonal to

Jψ(z2). We note that if {z1, z2} is a ψ-null pair, then it is also an Aψ-null pair for any

A ∈ Sp(2; C), while {µ−1(z1), µ
−1(z2)} is a ψµ-null pair for any Möbius transformation µ.

Lemma 4.2. If ψ has degree d = 6 then there exist a pair of higher singularities that

do not form a ψ-null pair.

Proof. We assume that z = 0 is a higher singularity of ψ, and that ψ(0) = [1, 0, 0, 0].

In this case, it follows from Proposition 3.2 that, modulo the action of Sp(2,C),

ψ(z) = [f1(z), z4(b4 + b5z + b6z
2), f3(z), f4(z)].

Since J(a, b, c, d) is unitarily orthogonal to (1, 0, 0, 0) if and only if b = 0, we see that

at most two other points of S2 are ψ-null pairs with z = 0. In particular, the lemma is

proved if ψ has four higher singularities.

If ψ has exactly three higher singularities then the Plücker formulae (3) show that at

least one of them, say z = 0, does not have r0(0) = 0, r1(0) = 1. Assume one of the other

singularities is at z = ∞ and that {0,∞} form a ψ-null pair. Then, writing f(z) in the

form of Proposition 3.2, we have 2k1 + k2 ≥ 5, so that

ψ(z) = [h0(z), b5z
5, zk1h1(z), zk1+k2h2(z)]
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so that the third higher singularity doesn’t form a ψ-null pair with z = 0. Finally, as

obseved in [3], it follows from Theorem 4.1 of that paper that if ψ is 2-point ramified then

the two higher singularities do not form a ψ-null pair.

Proposition 4.3. Let ψ : S2 → CP 3 be a linearly full horizontal holomorphic curve

of degree 6. Then there exists a Möbius transformation µ and an element A of Sp(2,C)

such that either

(5) Aψµ(z) = [a0 + a1z + a2z
2, b4z

4 + b5z
5 + b6z

6, c1z + c2z
2 + c4z

4 + c5z
5, d3z

3],

with a0b6d3 6= 0 and with certain relations between the coefficients (which we will not need)

given by the horizontalilty condition (2),

or

(6) Aψµ(z) = [a0 + a1z + a2z
2, b4z

4 + b5z
5 + b6z

6, c1z + c2z
2 + c3z

3, d3z
3 + d4z

4 + d5z
5],

with a0b6 6= 0 and the following horizontality conditions

(7) 2a0b4 + c1d3 = 0,

(8) 5a0b5 + 3a1b4 + 3c1d4 + c2d3 = 0,

(9) 3a0b6 + 2a1b5 + a2b4 + 2c1d5 + c2d4 = 0,

(10) 5a1b6 + 3a2b5 + 3c2d5 + c3d4 = 0,

(11) 2a2b6 + c3d5 = 0.

Proof. It follows from Lemma 4.2 and Lemma 4.2 of [3] that there exists a Möbius

transformation µ and Ã ∈ Sp(2,C) such that

1. Ãψµ(0) = [1, 0, 0, 0],

2. z = 0 is a higher singularity of Ãψµ,

3. Ãψµ(∞) = [0, 1, 0, 0],

4. z =∞ is a higher singularity of Ãψµ.
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In this case, it follows from Proposition 3.2 that there exists A ∈ Sp(2,C) such that

Aψµ(z) = [a0 + . . .+a5z
5, b4z

4 +b5z
5 +b6z

6, c1z+ . . .+c5z
5, d3z

3 +d4z
4 +d5z

5], a0b6 6= 0.

Case 1: deg(c1z + . . .+ c5z
5) > deg(d3z

3 + d4z
4 + d5z

5).

Let φ̃(z) = BAψµ(1/z), where B ∈ Sp(2,C) is given by

B(f1, f2, f3, f4) = (−f2, f1, f3, f4).

Then

φ̃(z) = [−b6 − b5z − b4z2, a5z + . . .+ a0z
6, c5z + . . .+ c1z

5, d5z + d4z
2 + d3z

3]

has a higher singularity at z = 0, and φ̃(0) = [1, 0, 0, 0]. Moreover, the order of vanishing

at z = 0 of c5z + . . .+ c1z
5 is less than that of d5z + d4z

2 + d3z
3. Hence, by Proposition

3.2, it follows that a5 = a4 = a3 = 0, d5 = d4 = 0. Hence d3 cannot be zero so we may

use a further element of Sp(2,C) to assume that c3 = 0. This give us the canonical form

(5).

Case 2: deg(c1z + . . .+ c5z
5) ≤ deg(d3z

3 + d4z
4 + d5z

5).

Let φ(z) = JAψµ(1/z). Then

φ(z) = [−b6 − b5z − b4z2, a5z + . . .+ a0z
6,−d5z − d4z

2 − d3z
3, c5z + . . .+ c1z

5]

has a higher singularity at z = 0, and φ(0) = [1, 0, 0, 0].

Hence, by first applying an element of Sp(2,C) which fixes elements of C4 of the form

(a, b, c, 0), we may assume that deg(c1z + . . . + c5z
5) < deg(d3z

3 + d4z
4 + d5z

5). It now

follows from Proposition 3.2 that a5 = a4 = a3 = 0, c5 = c4 = 0, so that Aψµ has the

form given in (6).

The horizontality conditions (7), (8), (9), (10), (11), follow immediately from (2).

5 Proof of Theorem 1.1

As mentioned earlier, we prove the theorem by showing that the zero polynomial is a

regular value of Φ6 : V6 → C[z]10. By Lemma 4.1 and Proposition 4.3, we may show this

by showing that, for each f in Φ−1
6 {0} taking one of the two forms (5) or (6), the rank

of the derivative dΦ6|f , given in (4), is equal to 11. The method we use is a brute-force

calculation using Mathematica. It would be gratifying to find a more elegant, geometrical

proof.

We first fix bases of (C[z]6)
4 and C[z]10 in the obvious way, using the standard basis

{1, z, . . . , zn} of C[z]n. For f ∈ V6 we then let Df be 11× 28 matrix of dΦ6|f with respect

to these bases.
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Lemma 5.1. If f has the form of (5), then dΦ6|f has rank 11.

Proof. The result here is staightforward. It is easy to identify an 11 × 11 minor of

Df which may be made lower-triangular by a permutation of the rows and a permutation

of the columns, and whose determinant is then easily seen to be a non-zero scalar multiple

of a0
3b6

2d3
6.

Lemma 5.2. If f has the form of (6) with any of a2, b4, c1, c3, d3, d5 being zero then

dΦ6|f has rank 11.

Proof. By considering the map φ(z) = [Jf(1/z)], we see that we only need to show

that the lemma is true if any of b4, c1, d3 are zero.

Case 1: b4 = 0. We first note that if b5 is also zero, then it is easy to pick out an

11 × 11 minor of Df which may be made lower-triangular by a permutation of the rows

and a permutation of the columns, and whose determinant is then easily seen to be a

non-zero scalar multiple of a0
6b6

5.

So, we now assume that b4 = 0 but b5 6= 0. In this case, it follows from Proposition

3.2 that 2k1 + k2 = 6 and so either k1 = 1, and k2 = 3, or k1 = 2, and k2 = 1. If k1 = 1,

and k2 = 3 then, by Proposition 3.2 again, c1 6= 0, d3 = 0 and d4 6= 0. We may then pick

out an 11× 11 minor of Df which may be made lower-triangular by a permutation of the

rows and a permutation of the columns, and whose determinant is then easily seen to be

a non-zero scalar multiple of a0
3b5

2d4
6. On the other hand if k1 = 2, and k2 = 1 then

c1 = 0, c2 6= 0 and d3 6= 0. We may then pick out an 11× 11 minor of Df which may be

made lower-triangular by a permutation of the rows and a permutation of the columns,

and whose determinant is then easily seen to be a non-zero scalar multiple of a0b6
6c2

2d3
2.

Case 2: c1 = 0. Here, we have that k1 ≥ 2, so that 2k1 + k2 ≥ 5. Hence b4 = 0

and we are back in Case 1.

Case 3: d3 = 0. Here, we have that k1 + k2 ≥ 4, so that 2k1 + k2 ≥ 5. Hence

b4 = 0 and we are again back in Case 1.

So, from now on we assume that f has the form of (6) with all of a0, a2, b4, b6, c1, c3, d3, d5

being non-zero. For subsequent cases we will need to consider further 11 × 11 minors of

Df . It turns out that there is a minor whose determinant is a non-zero multiple of

a2
5b4b6

2c3(3a0c3 + a2c1 − a1c2), so that Df has rank 11 unless this expression is equal to

zero. Consideration of another two suitable minors shows that Df has rank 11 except

possibly when the following three equations hold

(12) 3a0c3 + a2c1 − a1c2 = 0,

(13) b4d5 − b5d4 + 3b6d3 = 0,
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(14) −5c1d5 + 2c2d4 − 3c3d3 = 0.

Lemma 5.3. If f has the form of (6) with a0, a2, b4, b6, c1, c3, d3, d5 all being non-zero,

but a1 = b5 = 0, then dΦ6|f has rank 11.

Proof. In this case, we can use (7), (11) and (13) to write a0, a2 and d3 in terms of

b4, b6, c1, c3 and d5. In fact,

a0 =
d5c1
6b6

, a2 = −d5c3
2b6

, d3 = −b4d5

3b6
.

If we substitute these into (9) and (14) we find that

c2d4 = 0 and b4 =
5c1b6
c3

.

By replacing [f ] by the map φ(z) = [Jf(1/z)] if necessary, we may assume that d4 = 0

in which case (10) shows that c2 = 0 also.

It now follows that the following two matrices(
a0 −b4
a2 −3b3

)
,

(
5a0 3c1

3a2 c3

)
have non-zero determinant, these being non-zero scalar multiples of c1d5 and c1c3d5/b6

respectively.

Using this, we may then find an 11× 11 minor of Df which, by a permutation of the

rows and a permutation of the columns, may be exhibited as the direct sum of a lower-

triangular matrix and the above two matrices. The determinant of this minor is then easily

seen to be a non-zero scalar multiple of the product of a0
2a2

2b4b6
2 and the determinants

of the above two matrices. This shows that Df has rank 11 if a1 = b5 = 0.

Using the usual argument involving φ, it remains to prove that Df has rank 11 when

b5 6= 0. In summary, then, Lemmas 5.2 and 5.3 show that Df has rank 11 whenever f has

the form 6 with any of a2, b4, b5, c1, c3, d3, d5 being zero.

Lemma 5.4. If f ∈ V6 has the form of (6) with a0, a2, b4, b5, b6, c1, c3, d3, d5 all being

non-zero, then dΦ6|f has rank 11.

Proof. We first note that by using projective equivalence and by replacing z by λz

if necessary, we may assume that b5 = c3 = 1.

Assuming that 1− 2b6c2 and 3− 2b4b6 + 10b6
2c1− 12b6c2 + 12b6

2c2
2 are both non-zero,

we may use (7)-(11), (12)-(14) to write a0, a2, b4, c1, c2, d3, d4, d5 in terms of a1 and b6. We

then find that

[f ] = [a1(1 + 2zb6)
2, z4(1 + 2zb6)

2, z(1 + 2zb6)
2, 2z3b6(1 + 2zb6)

2],
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so that f has a non-trivial common factor and hence is not in V6.

We now consider what happens when 1−2b6c2 = 0. Then this, together with (7)-(11),

(12)-(14) enables us to write a0, a1, b4, c2, d4, d5 in terms of a2, b6, c1, d3. Mathematica now

lets us pull out two 11× 11 minors of Df with determinants non-zero multiples of

d3(1− 18b6
2c1) + 60a2b6

3c1 and 3a2 − 10a2b6
2c1 + 3b6d3.

Thus, if either of the above expressions is non-zero then Df has rank 11. We now consider

what happens when

d3(1− 18b6
2c1) + 60a2b6

3c1 = 0 and 3a2 − 10a2b6
2c1 + 3b6d3 = 0.

Then 1 − 18b6
2c1 6= 0 and and we may solve the above two equations for d3 and c1 in

terms of a2 and b6. We then find that

[f ] = [a2(3 + 8zb6)(9 + 40zb6), 5b6z
4(3 + 8zb6)(5 + 8zb6),

5z(3 + 8zb6)(1 + 8zb6),−10a2b6z
3(3 + 8zb6)(9 + 8zb6)],

so that f has a non-trivial common factor and hence is not in V6.

Finally we consider the case when 1 − 2b6c2 6= 0, but 3 − 2b4b6 + 10b6
2c1 − 12b6c2 +

12b6
2c2

2 = 0. In this case we use this equation together with (7)-(11), (12)-(14) to

write a0, b4, d3, d4, d5 in terms of a1, a2, b6, c1, c2. Substituting in (10) then gives a1b6
2(1−

2b6c2) = 0, so that a1 = 0. At this point, (7) gives a2c1(1 − 2b6c2) = 0, which is a

contradiction.

The lemmas in this section show that the rank of Df is maximal for every f ∈ Φ−1
6 {0},

that is to say 0 is a regular value of Φ6. As noted at the beginning of this section, this is

enough to complete the proof of Theorem 1.1.
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