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Abstract. We prove the conjecture, posed in 1993 by Bolton and Woodward,
that the dimension of the space of harmonic maps from the 2-sphere to the
2n-sphere is 2d + n2. We also give an explicit algebraic method to construct
all harmonic maps from the 2-sphere to the m-sphere.

1. Introduction

A harmonic map is a map ϕ : M → N between Riemannian manifolds which
extremizes the energy functional

∫
D |dϕ|2d vol over compact domains D in M ; this

functional generalizes the Dirichlet integral. Examples of harmonic maps include
harmonic functions, geodesics and minimal surfaces. Harmonic maps have been
used to prove important results in geometry, including rigidity results (see, for
example, [16]).

In this paper we study the space of harmonic maps from S2 to Sm. Since a
harmonic map from a 2-sphere is automatically weakly conformal (see, for example,
[26]), a map from a 2-sphere is harmonic if and only if it is a minimal branched
immersion [12].

Following the twistor lift approach initiated by Calabi in [6], the moduli space of
harmonic 2-spheres in Sm was studied, among other sources, in [1, 2, 10, 11, 17, 20,
21, 23, 24, 25]. It is known that the space of linearly full (i.e. not lying in a proper
sub-sphere) harmonic maps from S2 to S2n of degree d is isomorphic to two copies
of the space SO(2n+1,C) when d = n(n+1)/2, and it is empty if d < n(n+1)/2.
Apart from these remarkable results, not much is known for arbitrary d and n. The
dimension was only known when n = 2 [20, 23, 24, 25] and n = 3 [9].

In [3] Bolton and Woodward conjectured, using heuristic arguments, that the
dimension of the space of linearly full harmonic 2-spheres of degree d in S2n is
2d+ n2. In this paper we give a proof of this conjecture. To this end, we first find
a completely explicit algebraic method to construct any harmonic map from S2 to
S2n. The idea is to generalize the methods used in [2, 4, 5, 20, 23, 24, 25], where
harmonic maps from S2 to S4 are constructed, via the twistor lift approach, using
holomorphic maps from S2 to CP

3 satisfying a differential system; this is possible
because the twistor space of S4 is biholomorphic to CP

3. Hence, a completely
explicit algebraic construction is obtained, allowing the study of the dimension and
structure of the space of harmonic maps from S2 to S4.

In the case n > 2 the twistor space of the 2n-sphere is certainly not biholomorphic
to any complex projective space. Nevertheless, these two spaces are birationally
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equivalent and it turns out that this is sufficient in order to do a local study. In fact,
the moduli space of harmonic maps from S2 to S2n of a given degree d is locally

isomorphic to a space of holomorphic maps from S2 to CP
n(n+1)/2 of degree d and

satisfying a particular differential system, namely equation (7). This differential
system, in a different form, also appears in [5, 13].

The next step is to study the space of solutions of this differential system. As a
space of maps from the 2-sphere to complex projective space, we can restrict our
work to tuples of polynomials, as in [20]. The näıve approach—namely to use the
standard basis for polynomials and convert the differential system into a large set of
quadratic equations on the coefficients of the polynomials—does not work because
the system is too big. However, a different kind of basis for the space of polynomials
leads to a description of the set of solutions essentially as a determinantal variety
on a set of parameters that determine the polynomials, or alternatively, as the set
of integral elements of an exterior differential system in the space of parameters.

With this description, and using elementary intersection theory, we find that
2d+ n2 is a lower bound for the dimension of the space of harmonic maps from S2

to S2n.
To prove that 2d + n2 is also an upper bound, we introduce the concept of

extendable harmonic map. A similar concept also appears in [18] (as ‘maps with
extra eigenvalues’) and [19] (as ‘collapses of maps’). A harmonic map from S2 to
S2n is extendable if, after embedding S2n into S2(n+1) geodesically, the map can
be obtained as a suitable deformation through linearly full harmonic maps whose
codomain is S2(n+1). These deformations provide a local projection from the set of
harmonic maps into S2(n+1) to the set of harmonic maps into S2n. This projection
is used to produce an inductive procedure to show that 2d+ n2 is an upper bound
of the dimension of the space of harmonic maps from S2 to S2n.

It is worth noting that the proof implies that the dimension of the set of linearly
full harmonic maps from S2 to S2n is pure, i.e. all irreducible components have the
same dimension.

The paper is organized as follows. In Section 2 we review Calabi’s twistor con-
struction. Section 3 describes how to translate the problem into the study of maps
into complex projective space. To prove that this translation is good enough for
our purposes is highly technical, so for expository reasons we postpone it to Section
7. In Section 4 we give an explicit algebraic recipe to construct all harmonic maps
from S2 to spheres. Finally, in Section 5 we use this construction to prove Bolton
and Woodward’s conjecture for the linearly full case, and in Section 6 we consider
the non-linearly full case.

Acknowledgements: I would like to express my gratitude to Professors Q.-S.
Chi, J. Bolton, A. Rodŕıguez, J. C. Wood and M. C. Cuéllar for their guidance,
comments, inspiration and support, as well as to the referees for many useful ob-
servations. A good part of this work was done while employed at Universidad de
los Andes in Bogotá, Colombia.

2. Preliminaries

Recall ([7], for example) that a map ϕ : S2 → Sm ⊂ Rm+1 is harmonic if

∆S2

ϕ = λϕ for some function λ : S2 → R. Such a map is called linearly full if its
image does not lie in a proper geodesic sub-sphere of Sm. Using the topology of
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S2, Calabi showed in [6] that for ϕ : S2 → Sm to be linearly full, m must be an
even number 2n.

We do a quick review of the twistor construction in [6]. The twistor space of the
S2n sphere, denoted Zn (or Zn(C2n+1)), is the complex manifold of n-dimensional
linear subspaces of C2n+1 that are isotropic with respect to the complex bilinear
product

(1) (z,w) = ((z1, . . . , z2n+1), (w1, . . . , w2n+1)) =

2n+1∑

k=1

zkwk.

In other words, Zn is the submanifold of the Grassmannian of n-planes in C2n+1

given by

Zn = {P ∈ Gr(n,C2n+1) : (v, w) = 0 for all v, w ∈ P}.

We will use 〈z,w〉 := (z,w) to denote the Hermitian product in C2n+1, and the
word ‘perpendicular’ will always mean perpendicular with respect to this Hermitian
product.

The manifold Zn is a complex submanifold of Gr(n,C2n+1), so we can restrict
the Plücker embedding Pl : Gr(n,C2n+1) → PΛnC2n+1 to Zn. This restriction (also
denoted by Pl) has degree 2 [1, 21]. The tangent plane of Zn at a point P is the
subspace of the tangent plane to the Grassmannian at P—which can be described
as TPGr(n,C

2n+1) = Hom(P, P⊥)—given by [21]

TPZn = {L ∈ Hom(P, P⊥) : (Lu, u) = 0 ∀u ∈ P}.

There is a projection π : Zn → S2n defined as follows: For P ∈ Zn, π(P ) is
the unique real unit vector in C2n+1 such that {π(P ), P1, . . . , Pn, P̄1, . . . , P̄n} is a
positively oriented basis of C2n+1, where {P1, . . . , Pn} is a basis of P . Note that in
[10], π is denoted by π+, and π− is used to denote the map −π (i.e. π composed
with the antipodal map).

Given a linearly full harmonic map ϕ : S2 → S2n and isothermic coordinates
(z, z̄) in S2, Calabi defined ψ : S2 → Zn by

ψ := Span

{
∂ϕ

∂z̄
, . . . ,

∂nϕ

∂z̄n

}

and proved that ψ is well-defined and is holomorphic and horizontal (i.e. perpen-
dicular to the fibers of π). In other words, ∂ψ/∂z belongs to the subspace [21]

(2) HPZn = {L ∈ TPZn : L(P ) ⊥ P̄}.

In addition, ψ satisfies π ◦ψ = ϕ or −ϕ and it is linearly full, in the sense that the
image of ψ is not contained in any submanifold of the form

(3) ZF
n := {W ⊕ F ∈ Zn :W ∈ Zr((F ⊕ F̄ )⊥} ∼= Zr

where F is an (n− r)-dimensional subspace of C2n+1, with r < n (see [10]).
Conversely, if ψ : S2 → Zn is holomorphic, horizontal and linearly full then π ◦ψ

and−π◦ψ are harmonic and linearly full. Therefore we have a 2 to 1 correspondence
between linearly full harmonic maps from S2 to S2n and linearly full holomorphic
horizontal maps from S2 to Zn.

Since H2(Zn,Z) = Z [1, 21], the homology class induced by ϕ is a positive
multiple d = deg(ψ) of a generator of H2(Zn,Z). The number d is called the
twistor degree of ϕ; since the Plücker embedding has degree 2, we have that the
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degree of the curve Pl ◦ψ in PΛnC2n+1 is twice the twistor degree of ϕ, and so the
number d can also be characterized as Area(ϕ(S2))/4π [21].

Hence both harmonic and holomorphic and horizontal maps are graded by the
degree. Let

Harmf
d(S

2, S2n) = {Linearly full harmonic maps from S2 to S2n of area 4πd},

HHfd(S
2,Zn) = {Horizontal, holomorphic, full maps from S2 to Zn of degree d},

and let

Harmf,+
d (S2, S2n) = {π ◦ ψ : ψ ∈ HHfd(S

2,Zn)},

Harmf,−
d (S2, S2n) = {−π ◦ ψ : ψ ∈ HHfd(S

2,Zn)}.

The results discussed above then imply

Theorem 1. [6, 1, 10]

Harmf
d(S

2, S2n) = Harmf,+
d (S2, S2n) ⊔ Harmf,−

d (S2, S2n).

For most of the remainder of this paper we will study the properties of

HHfd(S
2,Zn). First we translate the condition of horizontality into a differential

system in projective space. This will be done in the following section.

3. Translation of the problem

In [8] a birational map from CP
Nn (where Nn := n(n + 1)/2) to Zn was con-

structed. Composition with the inverse of this map translates the problem of finding
holomorphic and horizontal maps into Zn to solving a system of differential equa-
tions on CP

Nn . We review here some of the main results, referring to [8] for some
of the proofs.

Let β = {E0, E1, . . . , En, E1, . . . , En} be a basis of C2n+1 such that

(4) (E0, E0) = 1, (E0, Ei) = (E0, Ei) = (Ei, Ej) = (Ei, Ej) = 0, (Ei, Ej) = δij ,

i.e. β is a unitary basis where 2n of the vectors are pairwise conjugate. In this
paper, these bases will be called isotropic bases.

Let E be the isotropic n-plane spanned by the vectors Ei, 1 ≤ i ≤ n, and let UE
be the open subset of Zn consisting of planes whose orthogonal projection over E
is onto. Then every P ∈ UE can be written as the graph of a map from E to E⊥.
Namely, P can be written as the span of n vectors of the form

αiE0 + Ei +

n∑

k=1

cikEk, 1 ≤ i ≤ n,

where αi, cik are complex numbers. Since P is isotropic, we have

αiαj + cij + cji = 0, 1 ≤ i, j ≤ n

which implies that cij = −(αiαj + τij)/2 for some τij ∈ C satisfying τij = −τji.

This defines a bijective, holomorphic map from an affine open subset of CPNn

onto UE , which can be extended to a birational map bβ : CPNn → Zn. We use the
subscript β to emphasize the dependency on the basis β chosen. Explicitly, using
homogeneous coordinates in CP

Nn , bβ : CPNn → Zn is the birational map that
takes

[s : α1 : · · · : αn : τ12 : · · · : τ1n : τ23 : · · · : τn−1,n]
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to the n-plane generated by the vectors

αℓ
s
E0 + Eℓ −

n∑

k=1

(αℓαk
2s2

+
τℓk
2s

)
Ek, 1 ≤ ℓ ≤ n

where, by definition, τji = −τij for 1 ≤ i ≤ j ≤ n. Using matrix notation in the
basis β, bβ is therefore the n-plane spanned by the rows of the matrix

(5)




α1

s 1 0 · · · 0 −
α2

1

2s2 −α1α2

2s2 − τ12
2s · · · −α1αn

2s2 − τ1n
2s

α2

s 0 1 · · · 0 −α2α1

2s2 + τ12
2s − α2

2

2s2 · · · −α2αn

2s2 − τ2n
2s

...
...

...
. . .

...
...

...
. . .

...
αn

s 0 0 · · · 1 −αnα1

2s2 + τ1n
2s −αnα2

2s2 + τ2n
2s · · · −

α2
n

2s2



,

or in shorter notation,

(6) (α/s, In, −(α tα+ sT )/2s2),

where the superscript t on the left denotes the transpose, α =
t
(α1, . . . , αn), and T

is the skew-symmetric matrix whose ij-entry is τij , 1 ≤ i, j ≤ n.
This map is just a common way to parametrize Zn (see for example [15, p.

235]). An alternative way to see this map appears in [13]: Zn is the quotient of
SO(2n + 1,C) by the isotropy subgroup (Gc)0 at a point of Zn. If (gc)0 is the
Lie subalgebra of this subgroup, the vector space so(2n + 1,C) can be written as
the direct sum of (gc)0 and a nilpotent subalgebra n parametrized by the complex
quantities αi, τjk, with the property that ξ3 = 0 for all ξ ∈ n. The map shown
above is just the equivalence class in SO(2n+1,C)/(Gc)0 ≃ Zn of the exponential
map restricted to n.

Given ψ ∈ HHfd(S
2,Zn), we would like to define ψ̃ := b−1

β ◦ ψ, thus translating

the problem from maps to Zn into maps to CP
Nn , as in the following diagram:

S2 S2nϕ -

Zn

?

ψ

ψ̃

π

�������*

�
�
�
�
�
���

?
π

?

CP
Nn

bβ

Figure 1. Lifts of harmonic maps.

There is, however, an initial problem: b−1
β is only birational, so it is not defined

in the whole of Zn, so it may not be defined in the image of ψ at all. Due to the
fact that ψ is linearly full it turns out that this never happens:

Lemma 1. If ψ ∈ HHfd(S
2,Zn) and β is an isotropic basis then the image of ψ is

contained in the image of bβ except for finitely many points.

Proof. See [8], Lemma 2.4.
�
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Thus, given ψ ∈ HHfd(S
2,Zn), the birational map b−1

β ◦ ψ is well defined except

at finitely many points, and therefore it can be completed to give a map ψ̃ : S2 →
CP

Nn . It is clear that ψ̃ is holomorphic. The condition of horizontality for ψ
translates into a system of differential equations on the functions s, αi, τjk. To find
this system, let us first recall how to describe ψ′(z) as an element of Hom(P, P⊥),
where P = ψ(z) and the dashes denote derivatives with respect to the variable z:
if c is a curve in C2n+1 such that c(z) ∈ ψ(z), then ψ′(z) takes the vector c(z) ∈ P
to the perpendicular projection of c′(z) into P⊥.

In our case, ψ can be described as the span of the rows of the matrix
(α/s, In, −(α tα+sT )/2s2). To simplify the notation, let γ = α/2s and R = T/2s.
Then we can write the curve c(z) as

tx
(
2γ, In, −(2γ tγ +R)

)

where, for our purposes, x ∈ Cn can be taken as constant. The linear map ψ′(z)
takes this vector to the projection of

tx
(
2γ′, On, −(2γ′ tγ + 2γ

t
γ′ +R′)

)

on P⊥, where On denotes the zero n × n matrix. Since ψ′(z) is in the horizontal
subspace HPZn of TPZn defined by expression (2), we must have

projP⊥

(
tx

(
2γ′, On, −(2γ′ tγ + 2γ

t
γ′ +R′)

))
⊥ P̄ ,

where the symbol ‘⊥’ means perpendicular with respect to the Hermitian product
〈z,w〉 := (z,w) for z,w ∈ C2n+1, with ( , ) defined by formula (1). This implies
that for all v ∈ P ,

(
projP⊥

(
tx

(
2γ′, On, −(2γ′ tγ + 2γ

t
γ′ +R′)

))
, v

)
= 0.

Since P is isotropic, the projection operator in the last equation is irrelevant. On
the other hand, v can be written as ty (2γ, In, −(2γ tγ +R)) for some y ∈ Cn, so
the condition of horizontality of ψ is equivalent to the condition

(
tx

(
2γ′, On, −(2γ′ tγ + 2γ

t
γ′ +R′)

)
, ty

(
2γ, In, −(2γ tγ +R)

))
= 0

for all x, y ∈ Cn. Computing this product—remember that each row vector on the
left hand side of the last expression is written in terms of an isotropic basis β as in
(4)—we obtain tx (2γ′ tγ − 2γ

t
γ′ −R′) y = 0 for all x, y ∈ Cn. This implies

2γ′ tγ − 2γ
t
γ′ = R′,

or in terms of the original functions,

α′ tα− α
t
α′ = sT ′ − s′T.

Thus we have the following

Proposition 1. Let ψ ∈ HHfd(S
2,Zn). Then ψ̃ := β−1 ◦ ψ = [s : α1 : · · · : αn :

τ12 : · · · : τn−1,n] satisfies

t
α′α− tαα′ = sT ′ − s′T,

or in components

(7) α′
iαj − αiα

′
j = sτ ′ij − s′τij .
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In addition, linear fullness of ψ translates into the condition

(8) W

((α1

s

)′

, . . . ,
(αn
s

)′
)

6≡ 0,

where W denotes the Wronskian.
Conversely, if ψ̃ : S2 → CP

Nn is holomorphic and satisfies conditions (7) and

(8), then ψ := bβ ◦ ψ̃ is linearly full, holomorphic and horizontal.

Proof. For the Wronskian condition, see [8], Proposition 2.2 and Theorem 2.3. Note
that for notational convenience the τij used in this paper differ from the ones defined
in [8] by a factor of 2 in order to get rid of the annoying factor of 2 appearing in
Equation 2.17 of [8].

�

Definition 1. Let

PDfd(S
2,CPNn) =

{
[s : α1 : · · · : αn : τ12 : · · · : τn−1,n] algebraic maps of degree d

satisfying α′
iαj − αiα

′
j = sτ ′ij − s′τij , and

(αi
s

)′

, 1 ≤ i ≤ n, independent
}

Then we have well defined maps

Bβ : PDfd(S
2,CPNn) −→

∞⋃

k=0

HHfk(S
2,Zn)

ψ̃ −→ ψ = bβ ◦ ψ̃

and

Cβ : HHfd(S
2,Zn) −→

∞⋃

k=0

PDfk(S
2,CPNn)

ψ −→ ψ̃ = b−1
β ◦ ψ

These maps are algebraic, and clearly Bβ ◦ Cβ and Cβ ◦ Bβ are equal to the identity
in their respective domains.

We would like these maps to preserve the degree d, but this is not always the
case (see [8]). However, it turns out that a slightly weaker result holds. First note
that all the functions s, αi and τjk, 1 ≤ i, j, k ≤ n can be considered as coprime
polynomials in one complex variable z of maximum degree d. For reasons that will

become clear in Section 4, we define the following subvariety of PDfd(S
2,CPNn).

Definition 2. Let

PDfd,0(S
2,CPNn) =

{
[s : α1 : · · · : αn : τ12 : · · · : τn−1,n] ∈ PDfd(S

2,CPNn)

with s =

d∏

ℓ=1

(z − zℓ), zℓ ∈ C distinct, and α1(zℓ) 6= 0, ∀ℓ
}
.

Then PDfd,0(S
2,CPNn) is open in PDfd(S

2,CPNn), and the following important
result holds.

Theorem 2. Given ψ ∈ HHfd(S
2,Zn) there exists a basis β and an open set Uβ ∋ ψ

such that Bβ : PDfd,0(S
2,CPNn) → Uβ is an algebraic isomorphism.
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The proof of this theorem is complicated and technical, so we will postpone it to
Section 7. Now we continue translating the problem of describing harmonic maps
from S2 to S2n into a suitable ‘parameter space’ via a simple algebraic construction.

4. Explicit algebraic construction

In this section we analyze the system of equations (7) given by

α′
iαj − αiα

′
j = sτ ′ij − s′τij , 1 ≤ i, j ≤ n

and the condition (8) given by

W

((α1

s

)′

, . . . ,
(αn
s

)′
)

6≡ 0,

where the functions s, αi, τjk are polynomials in one complex variable z of maximum
degree d and without common factors.

This analysis will lead to an explicit algebraic construction of any linearly full
harmonic map from S2 to S2n. The approach is quite simple: solve system (7) for
the polynomials τij and find a smaller more compact condition on the remaining
polynomials.

System (7) is equivalent to the conditions

(9) α′
iαj − αiα

′
j = s2

(τij
s

)′

, 1 ≤ i < j ≤ n,

which is equivalent to

(10)
α′
iαj − αiα

′
j

s2
has no residues, and

(11) τij = s

∫
α′
iαj − αiα

′
j

s2
dz is a polynomial of degree ≤ d.

It is not easy to translate condition (10) into a simple formula unless we assume
something about the zeros of s. This is actually the motivation for the definition

of PDfd,0(S
2,CPNn). From this point on we will assume that s has d distinct

complex zeros located at {z1, . . . , zd}. This requirement allows us to find a simple
formula for the residues of (αjα

′
i − αiα

′
j)/s

2, as follows.

Lemma 2. The function (α′
iαj − αiα

′
j)/s

2 has residues only at zℓ, 1 ≤ ℓ ≤ d, and

res
z=zℓ

α′
iαj − αiα

′
j

s2
=

1

s′

(
α′
iαj − αiα

′
j

s′

)′

|z=zℓ

.

Proof. It is clear that the residues of (α′
iαj − αiα

′
j)/s

2 are only at the zℓ. To find
the value of the residue at zℓ, use the formula

res
z=zℓ

α′
iαj − αiα

′
j

s2
= lim

z→zℓ

(
(z − zℓ)

2
α′
iαj − αiα

′
j

s2

)′

.

The right hand side gives

lim
z→zℓ

(
(z − zℓ)

2
α′
iαj − αiα

′
j

s2

)′

= lim
z→zℓ

(
s′

(z − zℓ)
2

s2
α′
iαj − αiα

′
j

s′

)′

= lim
z→zℓ

(
s′

(z − zℓ)
2

s2

)′ (α′
iαj − αiα

′
j

s′

)

|z=zℓ

+
1

s′

(
α′
iαj − αiα

′
j

s′

)′

|z=zℓ
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It is elementary to show that the first term of the last expression is 0. This proves
the lemma.

�

The following lemma translates system (7) into a completely algebraic condition.

Lemma 3. The polynomials s, αi, τjk are solutions of the system (7) if and only
if s divides W (s, αi, αj) and τij is given by formula (11), 1 ≤ i, j ≤ n.

Proof. Suppose that α′
iαj − αiα

′
j = sτ ′ij − s′τij . Differentiating, we obtain

α′′
i αj − αiα

′′
j = sτ ′′ij − s′′τij .

This implies

s′′(αiα
′
j − α′

iαj)− s′(αiα
′′
j − α′′

i αj) = s′′(s′τij − sτ ′ij)− s′(s′′τij − sτ ′′ij)

= s(s′τ ′′ij − s′′τ ′ij).

Thus,

W (s, αi, αj) = s(α′
iα

′′
j − α′′

i α
′
j)− s′(αiα

′′
j − α′′

i αj) + s′′(αiα
′
j − α′

iαj)

= s(α′
iα

′′
j − α′′

i α
′
j + s′τ ′′ij − s′′τ ′ij).

This proves the ‘only if’ part. Note that it holds in general, i.e. without the
restriction that s has simple zeros.

Now we prove the ‘if’ part. If s|W ((s, αi, αj)), then s|(s′′(α′
iαj−αiα

′
j)−s

′(α′′
i αj−

αiα
′′
j )). Since

s′′(α′
iαj − αiα

′
j)− s′(α′′

i αj − αiα
′′
j ) = −(s′)3

1

s′

(
α′
iαj − αiα

′
j

s′

)′

and since s′(zℓ) 6= 0, 1 ≤ ℓ ≤ d, we have that the function

1

s′

(
α′
iαj − αiα

′
j

s′

)′

must vanish at the points zℓ, 1 ≤ ℓ ≤ d. Therefore, by Lemma 2, (α′
iαj − αiα

′
j)/s

2

has no residues at the zeros of s, so it cannot have residues at all. Hence,
∫
α′
iαj − αiα

′
j

s2

is a rational function whose poles are simple and at the zeros of s. Furthermore,
an elementary calculation shows that the functions

τij = tij0s+ s

∫
α′
iαj − αiα

′
j

s2
,

where tij0 are arbitrary integration constants, are polynomials of degree less than
or equal to d.

�

Now we analyze the condition s |W (s, αi, αj) further. This condition is satisfied
if and only if W (s, αi, αj) = 0 at the points zℓ, 1 ≤ ℓ ≤ d, which happens if and
only if the three vectors

t(s(zℓ), α1(zℓ), . . . , αn(zℓ)),
t(s′(zℓ), α

′
1(zℓ), . . . , α

′
n(zℓ)),

t(s′′(zℓ), α
′′
1 (zℓ), . . . , α

′′
n(zℓ))
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are linearly dependent for each ℓ. Or equivalently, if and only if for each ℓ, 1 ≤ ℓ ≤ d,
there exist complex numbers pℓ, qℓ, rℓ not all equal to 0 such that

pℓs(zℓ) + rℓs
′(zℓ) + qℓs

′′(zℓ) = 0(12)

pℓα(zℓ) + rℓα
′(zℓ) + qℓα

′′(zℓ) = 0(13)

where α := t(α1, α2, . . . , αn) ∈ (C[z]d)
n, as before.

Since s(zℓ) = 0 and s′(zℓ) 6= 0, equation (12) is equivalent to rℓ =
−qℓs′′(zℓ)/s′(zℓ). Renaming the constants, solving equations (12) and (13) is there-
fore equivalent to solving

(14) pℓα(zℓ)− qℓ(s
′′(zℓ)α

′(zℓ)− s′(zℓ)α
′′(zℓ)) = 0, 1 ≤ ℓ ≤ d.

Since s is monic with distinct roots at z1, . . . , zd ∈ C, the polynomials {s, s/(z−
z1), . . . , s/(z − zd)} form a basis of C[z]d, and we can write

(15) s =
d∏

ℓ=1

(z − zℓ), αi = ai0s+
d∑

ℓ=1

aiℓ
s

z − zℓ
, τjk = tjk0s+

d∑

ℓ=1

tjkℓ
s

z − zℓ
,

for some complex numbers aiℓ, tjkℓ, with 1 ≤ i, j, k ≤ n and 0 ≤ ℓ ≤ d.
The idea now is to introduce expressions (15) into equation (14). But first we

translate condition (8) in terms of the quantities zℓ, aiℓ, tjkℓ.

Lemma 4. Suppose that d ≥ n. Then

W

((α1

s

)′

, . . . ,
(αn
s

)′
)

6≡ 0 ⇐⇒ Rank




a11 a21 . . . an1
a12 a22 . . . an2
...
a1d a2d . . . and


 = n.

Proof. Since all the functions involved are rational, the vanishing of the Wronskian
implies linear dependence [22]. Notice that αi(zℓ) = aiℓ s

′(zℓ). Thus

W

((α1

s

)′

, . . . ,
(αn
s

)′
)

≡ 0

⇐⇒
n∑

i=1

bi

(αi
s

)′

= 0, for some b1, . . . , bn ∈ C not all 0

⇐⇒
n∑

i=1

biαi = cs, b1, . . . , bn ∈ C not all 0, some c ∈ C

⇐⇒
n∑

i=1

biαi(zℓ) = 0, 1 ≤ ℓ ≤ d, b1, . . . , bn ∈ C not all 0

⇐⇒
n∑

i=1

biaiℓs
′(zℓ) = 0, 1 ≤ ℓ ≤ d, b1, . . . , bn ∈ C not all 0

⇐⇒ Rank




a11 a21 . . . an1
a12 a22 . . . an2
...
a1d a2d . . . and


 < n.

�
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The following proposition provides an explicit way to construct maps in

PDfd,0(S
2,CPNn) in terms of the quantities sℓ, aiℓ, tjkℓ.

Proposition 2. Let ψ̃ : S2 → CP
Nn be a holomorphic curve of degree d, and write

ψ̃ = [s : α1 : · · · : αn : τ12 : · · · : τn−1,n],

where s, αi, τjk are coprime polynomials in z ∈ C. Suppose that s has only simple
roots at z1, . . . , zd ∈ C, and write

s =

d∏

ℓ=1

(z − zℓ) αi = ai0s+

d∑

ℓ=1

aiℓ
s

z − zℓ
τjk = tjk0s+

d∑

ℓ=1

tjkℓ
s

z − zℓ
.

Then ψ̃ ∈ PDfd,0(S
2,CPNn) if and only if the following conditions hold.

(i) aiℓ
∑

u6=ℓ

aju
(zℓ − zu)2

− ajℓ
∑

u6=ℓ

aiu
(zℓ − zu)2

= 0, 1 ≤ i, j ≤ n.

(ii) tjkℓ = ak0ajℓ − aj0akℓ +
∑

r 6=ℓ

ajℓakr − akℓajr
zℓ − zr

, 1 ≤ j, k ≤ n.

(iii) a1ℓ 6= 0, 1 ≤ ℓ ≤ d.

(iv) Rank




a11 a21 . . . an1
a12 a22 . . . an2
...
a1d a2d . . . and


 = n.

Proof. In view of Lemma 4 and the discussion leading to equations (12) and (13),

ψ̃ = [s : α1 : · · · : τ12 : · · · ] ∈ PDfd,0(S
2,CPNn) if and only if (iii) and (iv) hold, τij

is given by equation (11), and for each ℓ, 1 ≤ ℓ ≤ d, there are complex numbers
pℓ, qℓ not both zero such that equation (14) holds, i.e.

pℓα(zℓ)− qℓ(s
′′(zℓ)α

′(zℓ)− s′(zℓ)α
′′(zℓ)) = 0, 1 ≤ ℓ ≤ d.

Note that if qℓ = 0 for some ℓ then α1(zℓ) = 0, which is false by assumption.
Introduce the expressions (15) into equations (11) and (12). Long and straight-

forward computations then show that equation (11) is equivalent to (ii), and that,
for 1 ≤ j ≤ n,

s′′(zℓ)α
′
j(zℓ)−s

′(zℓ)α
′′
j (zℓ) = 2

∑

u6=ℓ

aju
(s′(zℓ))

2

(zℓ − zu)2
+ajℓ

(
(s′′(zℓ))

2

2
−
s′(zℓ)s

′′′(zℓ)

3

)
.

Hence equation (14) is equivalent to
(16)

pℓajℓs
′(zℓ)− qℓ


2

∑

u6=ℓ

aju
(s′(zℓ))

2

(zℓ − zu)2
+ ajℓ

(
(s′′(zℓ))

2

2
−
s′(zℓ)s

′′′(zℓ)

3

)
 = 0.

Now we simplify this expression. Since qℓ and s
′(zℓ) are nonzero for 1 ≤ ℓ ≤ d, we

can divide equation (16) by −2qℓ(s
′(zℓ))

2 to obtain

λℓajℓ +
∑

u6=ℓ

aju
(zℓ − zu)2

= 0, 1 ≤ j ≤ n, 1 ≤ ℓ ≤ d,

where λℓ, 1 ≤ ℓ ≤ d, are suitable constants.
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Up to this point every step is reversible, so it only remains to prove that the last
equation is equivalent to (i). Thus let 1 ≤ i, j ≤ n. Then we have

aiℓ
∑

u6=ℓ

aju
(zℓ − zu)2

= −λℓaiℓajℓ = ajℓ
∑

u6=ℓ

aiu
(zℓ − zu)2

as desired. Conversely, suppose that

aiℓ
∑

u6=ℓ

aju
(zℓ − zu)2

= ajℓ
∑

u6=ℓ

aiu
(zℓ − zu)2

, 1 ≤ i, j ≤ n.

Since a1ℓ 6= 0 for all ℓ, defining

λℓ = −
1

a1ℓ

∑

u6=ℓ

a1u
(zℓ − zu)2

we have
λℓajℓ +

∑

u6=ℓ

aju
(zℓ − zu)2

= 0, 1 ≤ j ≤ n, 1 ≤ ℓ ≤ d.

�

Remark: Equation (i) of Proposition 2 can be written, in matrix notation, as

(17)




λ1
1

(z1−z2)2
· · · 1

(z1−zd)2
1

(z2−z1)2
λ2 · · · 1

(z2−zd)2

...
...

. . .
...

1
(zd−z1)2

1
(zd−z2)2

· · · λd







a11 a21 . . . an1
a12 a22 . . . an2
...

...
. . .

...
a1d a2d . . . and


 = 0.

Note that the definition of λℓ is implicit in the previous formula. This essentially
describes equation (i) of Proposition 2 as a determinantal variety. We will use this

description when we calculate the dimension of PDfd,0(S
2,CPNn).

An alternative and interesting way to think of equation (i) of Proposition 2 is
the following. Let Z = {(z1, . . . , zd) ∈ Cd : zi 6= zj if i 6= j}. Consider the exterior
differential system in Z generated algebraically by the forms

ωℓ :=
∑

u6=ℓ

1

(zu − zℓ)2
dzu ∧ dzℓ, 1 ≤ ℓ ≤ d.

Then the columns of the matrix (aiℓ)iℓ form a basis for the integral elements of this
exterior differential system. It may be interesting to explore this point of view in

order to understand more deeply the structure of Harmf
d(S

2, S2n).
Note that the construction above provides the following ‘recipe’: to construct

every linearly full harmonic map from S2 to S2n of a given degree d,

1) Find a meromorphic function g : S2 → S2 bounded at ∞ (g corresponds to
α1/s above) with only simple poles at z1, z2, . . . , zd ∈ C and with residue
a1ℓ 6= 0 at zℓ such that

dimker




λ1
1

(z1−z2)2
· · · 1

(z1−zd)2
1

(z2−z1)2
λ2 · · · 1

(z2−zd)2

...
...

. . .
...

1
(zd−z1)2

1
(zd−z2)2

· · · λd




≥ n, where λℓ =
∑

u6=ℓ

−a1u
a1ℓ(zu − zℓ)2

.

2) Find vectors t(ai1, . . . , aid) ∈ Cd, 2 ≤ i ≤ n, in the kernel of the matrix
above such that the set {t(ai1, . . . , aid), 1 ≤ i ≤ n}, is linearly independent.
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3) Choose arbitrary complex numbers ai0, 1 ≤ i ≤ n, and tij0, 1 ≤ i < j ≤ n,
and write s, αi, τjk as in expression (15), with the tjkℓ given by expression
(ii) of Proposition 2.

4) Choose an isotropic basis β and let ψ : S2 → Zn be given by the span of the
rows of the matrix (5).

5) Let ϕ = π ◦ ψ. Then π is harmonic, linearly full, and has degree d.

Using this recipe one can construct completely explicit examples of harmonic
maps. Note that the main difficulty is to find the function g of item 1). In fact,
once this function is found, the rest of the procedure is essentially linear. Exact
(i.e. not approximate) examples of such functions g can be found for given values
of d, n and the distinct complex numbers z1, . . . , zd. In fact, for n = 2, d = 3 it
is possible to find a formula that gives all such functions g: if the (3 × 3 in this
case) matrix in condition 1) above has nullity 2, then it is easy to first find the λℓ
and then a vector

t
(a11, . . . , a1d) with nonzero entries in the kernel of that matrix.

Then let g(z) =
∑d

ℓ=1 a1ℓ/(z − zℓ). This gives a family of functions depending on
two nonzero complex parameters c1, c2:

g(z) = c1

(
(z2 − z3)

2

z − z3
−

(z2 − z1)
2

z − z1

)
+ c2

(
(z3 − z2)

2

z − z2
−

(z3 − z1)
2

z − z1

)
.

For d = 4, n = 2 one can obtain a similar, yet more complicated, formula. For
higher values of n and d (of course with d ≥ n(n + 1)/2), given distinct numbers
z1, . . . , zd one strategy is to solve equation (17) (which is quadratic in the λℓ and
ajℓ) by giving arbitrary values to some of the variables—so some equations become
linear—and solving for the others. With this procedure and the help of a computer
one can find examples, for instance, when n = 3, d ≥ 8 and when n = 4, d ≥ 12.
The formulas, however, generally involve very large numbers.

We do not know the meaning of the condition on the meromorphic function
g in 1) above. It is interesting that much of the information about the space of
harmonic maps from S2 to S2n is encoded in this function. The function g is, in
the terminology of the next section, extendable in the sense that from it, using the
process above, one can generate harmonic maps into higher dimensional spheres.

Now we define the parameter space that we will analyze in the next section.

Definition 3. Let PSSnd ⊂ C
d+(d+1)n+(d+1)n(n−1)/2 be the quasi-affine variety

given, in the coordinates

(z1, · · · zd, a10, · · · a1d, a20, · · · , · · · , and, t120, · · · , t12d, t130, · · · , · · · tn−1,n,d),

by the conditions

• z1, . . . , zd distinct.
• a1,ℓ 6= 0 for 1 ≤ ℓ ≤ d.
• ai0 and tjk0 arbitrary for all i, j, k.

•




λ1
1

(z1−z2)2
· · · 1

(z1−zd)2
1

(z2−z1)2
λ2 · · · 1

(z2−zd)2

...
...

. . .
...

1
(zd−z1)2

1
(zd−z2)2

· · · λd







a11 a21 . . . an1
a12 a22 . . . an2
...

...
. . .

...
a1d a2d . . . and


 = 0, λi ∈ C.
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• Rank




a11 a21 . . . an1
a12 a22 . . . an2
...

...
. . .

...
a1d a2d . . . and


 = n.

• tjkℓ = ak0ajℓ − aj0akℓ +
∑
r 6=ℓ

ajℓakr − akℓajr
zℓ − zr

.

For convenience, we will use the short notation (z,a, t) to denote an element of
PSSnd .

Although PSSnd and PDfd,0(S
2,CPNn) are not algebraically equivalent, there is

an algebraic map from PSSnd to PDfd,0(S
2,CPNn). Thus we have

Theorem 3. The space PSSnd has the same dimension as PDfd,0(S
2,CPNn).

Proof. Proposition 2 implies that the algebraic map

PSSnd −→ PDfd,0(S
2,CPNn)

(z,a, t) −→ [s : α1 : · · ·αn : τ12 : · · · : τn−1,n](18)

where s =
d∏

ℓ=1

(z − zℓ), αi = ai0s+
d∑

ℓ=1

aiℓ
s

z − zℓ
, τjk = tjk0s+

d∑

ℓ=1

tjkℓ
s

z − zℓ
.

is onto and finite-to-one (the inverse image of any point in PDfd,0(S
2,CPNn) is given

by all the possible permutations of the ‘ℓ’ index in expression (18)). Therefore the
two spaces have the same dimension.

�

To prove Bolton andWoodward’s conjecture on the dimension of Harmf
d(S

2, S2n)
it only remains to find the dimension of PSSnd , which is what we do in the next
section.

5. Study of solutions in parameter space

We will first find that the dimension of PSSnd is at least 2d+ n2. The methods
used are elementary intersection theory. For convenience we will use the notation

Σz,λ :=




λ1
1

(z1−z2)2
· · · 1

(z1−zd)2
1

(z2−z1)2
λ2 · · · 1

(z2−zd)2

...
...

. . .
...

1
(zd−z1)2

1
(zd−z2)2

· · · λd



.

Proposition 3. The dimension of PSSnd is at least 2d+ n2.

Proof. Let Z = {z = (z1, . . . , zd) ∈ Cd : zi 6= zj if i 6= j}, and consider the maps

PSSnd
ν1−→ Z × C

d ν2−→ Symd(C),

given by

ν1(z,a, t) =


z,

1

a11

∑

u6=1

−a1u
(zu − z1)2

, . . . ,
1

a1d

∑

u6=d

−a1u
(zu − zd)2


 , ν2(z,λ) = Σz,λ.
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The image of ν2 ◦ ν1 is the open subset of the quasi-affine variety
{
Σz,λ : (z,λ) ∈ Z × C

d
}
∩ {M ∈ Symd(C) with nullity at least n}

consisting of matrices that have an element in the kernel whose components are all
different from 0 (note that this is needed so that (a11, . . . , a1d) has this property).
The dimension of the set of matrices of the form Σz,λ is 2d−1, and the codimension
of the set of symmetric matrices with nullity at least n is n(n+1)/2. The set PSSnd
is not empty, so ν2 ◦ ν1(PSS

n
d ) is not empty, so

dim(ν2 ◦ ν1(PSS
n
d )) ≥ 2d− 1−

n(n+ 1)

2
.

The fiber of the map ν2 over Σz,λ has dimension 1 everywhere (namely

ν−1
2 (Σz,λ) = {(z1 + u, . . . , zd + u, λ1, . . . , λd) : u ∈ C}), so

dim(ν1(PSS
n
d ) ≥ 2d−

n(n+ 1)

2
.

The fiber of the map ν1 over any point (z,λ) ∈ Z × Cd consists of all tuples
(z,a, t) such that the n vectors t(ai1, . . . , aid), 1 ≤ i ≤ n, span ker (Σz,λ), ai0,
1 ≤ i ≤ n and tij0, 1 ≤ i < l ≤ n are arbitrary complex numbers, and the rest
of the tijℓ are given by expression (ii) of Proposition 2. This set is isomorphic to

an open subset of Cn
2

× Cn × Cn(n−1)/2, so it has dimension n2 + n+ n(n− 1)/2.
Therefore

dim(PSSnd ) ≥ 2d−
n(n+ 1)

2
+ n2 + n+ n(n− 1)/2 = 2d+ n2.

�

The opposite inequality, namely that dim(Harmd(S
2, S2n)) ≤ 2d + n2, appears

at the end of [18]. Before this came to our knowledge, a proof of this fact was
found, so we include it here for the sake of completeness. It seems also that this
fact was essentially known by Bolton and Woodward, at least for some particular
cases.

The methods we use are actually very similar to those in [18] (namely doing
induction on n), and the concept of ‘k-extendable maps’ defined below turns out
to be a particular case of the concept of ‘maps with k pairs of extra eigenfunctions’
used in [18]. It may be, in fact, that these two definitions are equivalent.

Definition 4. An element (z,a, t) ∈ PSSnd is ‘k-extendable’ if dim(ker(Σz,λ)) =
n+ k. The set of k-extendable elements in PSSnd will be denoted by E (≥k)

n,d .

The term ‘k-extendable’ comes from the fact that an element of PSSnd can be

extended to an element of PSSn+kd . A different way to say this is the following.
Consider the projections

(z, a10, · · · , an+1,d, . . . , t12d, . . . , tn,n+1,d) ∈ PSSn+1
d

↓ pn
(z, a10, · · · , an,d, . . . , t12d, . . . , tn−1,n,d) ∈ PSSnd

given by deletion of all the components an+1ℓ and tj,n+1,ℓ, 1 ≤ ℓ ≤ d, 1 ≤ j ≤ n.

Then E (≥k)

n,d = pn+k ◦ · · · ◦ pn(PSS
n+k
d ).
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The corresponding objects in PDfd,0(S
2,CPNn) are as follows. The projections

pn correspond to

[s : α1 : · · · : αn : αn+1 : τ12 : · · · : τ1,n+1 : τ23 : · · · : τn,n+1] ∈ PDfd,0(S
2,CPNn+1)

↓

[s : α1 : · · · : αn : τ12 : · · · : τ1,n : τ23 : · · · : τn−1,n] ∈ PDfd,0(S
2,CPNn)

given by deletion of all the components that have n + 1 as subscript. It is well
defined since α1 is not zero at the zeros of s, and s has degree d. Then an element

in PDfd,0(S
2,CPNn) is k-extendable if it is in the image of k consecutive projections.

The projection pn : PSSn+1
d → E (≥1)

n,d ⊆ PSSnd is onto. Therefore, by computing

the dimension of the fibers of pn and the dimension of E (≥1)

n,d we will be able to find

a relation between the dimensions of PSSn+1
d and PSSnd .

Lemma 5. The variety E (≥1)

n,d has codimension at least 1 in PSSnd .

Proof. Suppose not. Then E (≥1)

n,d would contain some open subset of PSSnd , and then

there would be a point φ ∈ E (≥1)

n,d such that every continuous curve φu in PSSnd with

φ0 = φ would be contained in E (≥1)

n,d for u in a neighborhood of 0.

We will prove that this is not the case. Let φ = (z,a, t) ∈ E (≥1)

n,d . Then the
corresponding matrix Σz,λ has nullity greater than or equal to n+1. Let q := d−n
and let ℓ be the rank of Σz,λ, so ℓ < q. By reordering the indexes we can assume
that the first ℓ columns of Σz,λ are linearly independent. Consider the matrix

Σuz,λ = Σz,λ +




0 0 0
0 u Iq−l 0
0 0 0




obtained by adding u ∈ C to the diagonal entries of Σz,λ from ℓ + 1 to q. The
nullity of this matrix is at least d− q = n. For 1 ≤ i, j, k ≤ n, 1 ≤ ℓ ≤ d, let (auiℓ)iℓ,
be a continuous family of matrices of rank n whose columns are in the kernel of
Σu

z,λ and such that a0iℓ = aiℓ, let a
u
i0 = ai0, let t

u
ijℓ be given by the formula in

Proposition 2 (ii) and let tujk0 = tjk0. Then the curve φu = (zℓ, a
u
iℓ, t

u
jk) ∈ PSSnd

constructed this way satisfies φ0 = φ, and for u 6= 0 it is not hard to see that the
matrix Σu

z,λ has nullity n. Therefore φu 6∈ E (≥1)

n,d for u 6= 0. This proves the lemma.
�

Proposition 4. The dimension of PSSnd is less than or equal to 2d+ n2.

Proof. We proceed by induction. The case n = 1 is straightforward since

PDfd,0(S
2,CP1) is an open subset of the set of meromorphic functions of degree

d from S2 to CP
1, and therefore it has dimension 2d + 1. The cases n = 2 and

n = 3 were proved in [20, 23, 24, 25] and [9] respectively.
Suppose that the dimension of PSSnd is less than or equal to 2d+ n2. Consider

the projection
pn : PSSn+1

d → E (≥1)

n,d .

Note that, pn(E
(≥k)

n+1,d) = E (≥k+1)

n,d . Thus pn restricts to

PSSn+1
d \ E (≥1)

n+1,d → E (≥1)

n,d \ E (≥2)

n,d .

This restriction is onto, so we can find the dimension of PSSn+1
d by adding the

dimensions of E (≥1)

n,d \ E (≥2)

n,d and the dimension of the fiber.
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Let φ = (z,a, t) ∈ E (≥1)

n,d \ E (≥2)

n,d ⊂ PSSnd . Then p−1
n (φ) consists of those

(zℓ, aiℓ, tjkℓ) ∈ PSSn+1
d , where 1 ≤ i, j, k ≤ (n + 1) and 0 ≤ ℓ ≤ d, obtained

by inserting an+1,ℓ, tj,n+1,ℓ, 0 ≤ ℓ ≤ d, 1 ≤ j ≤ n, in the appropriate slots in the
original (z,a, t), where

• t(an+1,1, an+1,2, . . . , an+1,d) ∈ ker(Σz,λ).
• tj,n+1,ℓ, 1 ≤ j ≤ n, 1 ≤ ℓ ≤ d are given by Proposition 2 (ii).
• an+1,0 and tj,n+1,0, 1 ≤ j ≤ n, are arbitrary complex numbers.

Therefore p−1
n (φ) is isomorphic to an open subset of ker(Σz,λ), which has dimension

n + 1 since φ ∈ E (≥1)

n,d \ E (≥2)

n,d , times C × Cn, and therefore p−1
n (φ) has dimension

n+ 1 + 1 + n = 2n+ 2.
On the other hand, Lemma 5 implies that the dimension of pn(PSS

n+1
d \E (≥1)

n+1,d) =

E (≥1)

n,d \ E (≥2)

n,d is less than or equal to dim(PSSnd )− 1, and that PSSn+1
d and PSSn+1

d \

E (≥1)

n+1,d have the same dimension. Putting it all together, we obtain

dim(PSSn+1
d ) = dim(PSSn+1

d ) \ E (≥1)

n+1,d

≤ dim(Image of pn) + dim(Fiber of pn)

≤ (dim(PSSnd )− 1) + 2n+ 2

≤ 2d+ n2 + 2n+ 1

= 2d+ (n+ 1)2.

�

Theorem 4. The space Harmf
d(S

2, S2n) has pure dimension 2d+ n2.

Proof. In each irreducible component, Theorem 3 and Propositions 3 and 4 show

that PDfd,0(S
2,CPNn) has pure dimension 2d + n2. Then Theorem 2 shows that

every element of HHfd(S
2,Zn) is contained in an open subset of dimension 2d+n2,

so HHfd(S
2,Zn) has pure dimension 2d + n2. Finally, use Theorem 1 to identify

Harmf,+
d (S2, S2n) and Harmf,−

d (S2, S2n) with HHfd(S
2,Zn).

�

6. The non-linearly full case

In order to complete the study of the dimension of the moduli space of harmonic
maps from S2 to Sm we need to consider the set Harmd(S

2, Sm) of all (full and
non-full) harmonic maps from S2 to Sm. Evidently,

Harmd(S
2, Sm) = Harmf

d(S
2, Sm) ⊔ Harmnf

d (S2, Sm),

where Harmnf
d (S2, Sm) denotes the set of non-full maps. Note that when m is odd,

the set Harmf
d(S

2, Sm) is empty [6]. So it is clear that the properties of these sets
are quite different depending on the parity of m.

The variety of all holomorphic and horizontal maps from S2 to Zn will be denoted

HHd(S
2,Zn), and HHnfd (S2,Zn) will denote the subvariety of non-full maps.

It is convenient to split the space of non-full harmonic maps into pieces cor-
responding to the dimension of the sphere where the image of the map lies, as
follows.
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Definition 5. For ℓ ≤ m, let

Harm
(≤ℓ)
d (S2, Sm) =

{
ϕ ∈ Harmd(S

2, Sm) : ϕ(S2) ⊆ Sm ∩ V,

for some V ∈ Gr(ℓ + 1,Rm+1)
}
,

and let

Harm
(2k)
d (S2, Sm) = Harm

(≤2k)
d (S2, Sm) \Harm

(≤2(k−1))
d (S2, Sm).

The corresponding objects in HHnfd (S2,Zn) are

HH
(≤k)
d (S2,Zn) =

{
ψ ∈ HHnfd (S2,Zn) : ψ(S

2) ⊂ ZF
n

for some F ∈ Gr(n− k,C2n+1)
}

and

HH
(k)
d (S2,Zn) = HH

(≤k)
d (S2,Zn) \HH

(≤(k−1))
d (S2,Zn),

where, for F ∈ Gr(n− r,C2n+1), ZF
n := {W ⊕ F ∈ Zn :W ∈ Zr((F ⊕ F̄ )⊥)}.

These definitions also appear in [10]. Note that the set Harm
(2k)
d (S2, Sm) consists

of maps that are linearly full in some 2k-dimensional geodesic sub-sphere of Sm.
The map π : Zn → S2n induces surjective maps

Π± : HHd(S
2,Zn) → Harmf,±

d (S2, S2n) ⊔ Harmnf
d (S2, S2n)

defined by Π±(ψ) = ±π ◦ ψ. Note that Π± map the variety HH
(k)
d (S2,Zn) onto

Harm
(2k)
d (S2, S2n) for k < n, and take HH

(n)
d (S2,Zn) ≡ HHfd(S

2,Zn) bijectively

onto Harmf,±
d (S2, S2n) (Theorem 1).

Directly from the definition, and using the fact that Harm
(≤2k+1)
d (S2, Sm) =

Harm
(≤2k)
d (S2, Sm) [6], we have [10]

Harmd(S
2, S2n) = Harmf,+

d (S2, S2n) ⊔ Harmf,−
d (S2, S2n)

⊔ Harm
(2(n−1))
d (S2, S2n) ⊔ Harm

(2(n−2))
d (S2, S2n) ⊔ · · · ⊔ Harm

(2)
d (S2, S2n).

and

Harmd(S
2, S2n+1) = Harm

(2n)
d (S2, S2n+1)

⊔ Harm
(2(n−1))
d (S2, S2n+1) ⊔ · · · ⊔ Harm

(2)
d (S2, S2n+1).

Now we address what is meant by the dimension of these sets. For the linearly full

case this was clear: we implicitly assumed that Harmf,±
d (S2, S2n) had the structure

induced by the bijective maps Π±. In the non-linearly full case, if k < n−1 the maps

Π± : HH
(k)
d (S2,Zn) → Harm

(2k)
d (S2, S2n) are onto but not bijective; furthermore,

when m is odd we need to discuss the structure of Harm
(2k)
d (S2, Sm) before being

able to study its dimension.
A natural topological structure for the sets Harmd(S

2, Sm) and HHd(S
2,Zn)

is the compact-open topology. On the other hand, since Zn is a subvariety of
degree 2 [1] of P(ΛnC2n+1) ≃ CP

Mn (where Mn :=
(
2n+1
n

)
− 1) via the Plücker

embedding, the space HHd(S
2,Zn) is a subvariety of the space of holomorphic

maps of degree 2d from S2 to CP
Mn , which is regarded as the projectivization

of the set of (Mn + 1)-tuples of coprime polynomials in z with maximum degree

exactly 2d. Therefore HHd(S
2,Zn) is a quasi-projective subvariety of P(C[z]Mn+1

2d ),
and in particular each irreducible component is a topological manifold, maybe with
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singularities (in fact this topology coincides with the compact-open topology). It is
shown in [10] that the maps Π± : HHd(S

2,Zn) → Harmd(S
2, S2n) are continuous

and closed. Further, Π± : HH
(k)
d (S2,Zn) → Harm

(2k)
d (S2, S2n) is a fiber bundle

with fiber SO(2(n− k),R)/U(n− k). For any m we also have the fiber bundle

ρk : Harm
(2k)
d (S2, Sm) → Gr(2k + 1,Rm+1)

ϕ → (2k + 1)-subspace where ϕ(S2) lies,

with fiber Harmf,+
d (S2, S2k). Hence the sets Harm

(2k)
d (S2, Sm) are finite dimen-

sional topological manifolds away from possible singular points. This is all the
structure we need in order to calculate their dimension.

In addition, the space HHd(S
2,Zn) has an analytic structure as a subvari-

ety of P(C[z]Mn+1
2d ), and so does Harmd(S

2, Sm) as a subvariety of the manifold
C∞(S2, Sm). With these structures, the maps Π± are real analytic submersions,
and the bundles described above are real analytic, of course away from the (possible)
singular locus (see [19] for the n = 2 case; for n > 2 it is similar).

Further, for k ≥ n−1 the complex structure of HH
(k)
d (S2,Zn) can be transferred

to Harm
(2k)
d (S2, S2n) via the diffeomorphisms Π±. However, for k < n − 1 we

do not know if the spaces Harm
(2k)
d (S2, S2n) admit a complex structure; we use

complex instead of real dimension in the theorem below just to have a more compact
statement.

Now we find the dimension of Harm
(2k)
d (S2, Sm) using the fiber bundle given by

ρk explained above.

Theorem 5. When m = 2n is even,

dimC(Harm
(2k)
d (S2, S2n)) = 2d+ n2 − (n− k)(n− k − 1).

In particular,
dimC(Harmd(S

2, S2n)) = 2d+ n2.

When m = 2n+ 1 is odd,

dimR(Harm
(2k)
d (S2, S2n+1)) = 2[2d+ n2 − (n− k)(n− k − 1)] + 2k + 1.

In particular,

dimR(Harmd(S
2, S2n+1)) = 2(2d+ n2) + 2n+ 1.

Proof. The fiber of the surjective map ρk : Harmd(S
2, S2k) → Gr(2k + 1,Rm+1) is

Harmf,+
d (S2, S2k)) at every point. Therefore

dimR(Harm
(2k)
d (S2, Sm)) = dimR(Harm

f,+
d (S2, S2k)) + dimR(Gr(2k + 1,Rm+1))

= 2(2d+ k2) + (2k + 1)(m− 2k),

so for m even

dimR(Harm
(2k)
d (S2, S2n)) = 2[2d+ n2 − (n− k)(n− k − 1)],

and therefore

dimC(Harm
(2k)
d (S2, S2n)) = 2d+ n2 − (n− k)(n− k − 1),

and for m odd,

dimR(Harm
(2k)
d (S2, S2n+1)) = 2[2d+ n2 − (n− k)(n− k − 1)] + 2k + 1.

�
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It is an interesting fact that dimC(Harm
nf
d (S2, S2n)) is 2d + n2, i.e. equal to

dimC(Harm
f
d(S

2, S2n)).

7. Proof of Theorem 2

We fix the following notation.

• If S is a subset of a vector space, we will use 〈S〉 to denote the span of S.
• For an isotropic basis β = {E0, E1, . . . , En, Ē1, . . . , Ēn} of C2n+1, the subspaces
〈E1, . . . , En〉 and 〈Ē1, . . . , Ēn〉 will be denoted by Eβ and Ēβ , respectively.

• Given two subspaces V1, V2 of CN we will denote (‘ISO’ refers to ‘isotropic’)

HomISO(V1, V2) := {L ∈ Hom(V1, V2) : (L(v1), v1) = 0 ∀v1 ∈ V1}.

• Let ψ ∈ HHfd(S
2,Zn) and let β be an isotropic basis of C2n+1. The components

of Cβ(ψ) corresponding to s and α1 in homogeneous coordinates (i.e. the first
and second components) will be denoted by (Cβ(ψ))s and (Cβ(ψ))α1 respectively.
In other words, writing Cβ(ψ) = [s : α1 : · · · : αn : τ12 : · · · : τn−1,n], define

(Cβ(ψ))s := s and (Cβ(ψ))α1 := α1.

The proof of Theorem 2 goes as follows:

(i) Show that Bβ(PD
f
d,0(S

2,CPNn)) ⊂ HHfd(S
2,Zn). This is done in Proposition 5.

(ii) Show that Bβ(PD
f
d,0(S

2,CPNn)) is open in HHfd(S
2,Zn) and that every ψ ∈

HHfd(S
2,Zn) is in the image of Bβ for some basis β. This is done in Lemma 9,

after preparing it with several lemmas.

Since Bβ is algebraic and has algebraic inverse Cβ , this will prove the theorem.

The following proposition asserts that Bβ(ψ̃) has the same degree as ψ̃ when

ψ̃ ∈ PDfd,0(S
2,CPNn). Its proof is unexpectedly simple.

Proposition 5. Let β be an isotropic basis of CNn.

(i) If ψ̃ ∈ PDfd(S
2,CPNn) then the degree of Bβ(ψ̃) is at least d.

(ii) Bβ(PD
f
d,0(S

2,CPNn)) ⊂ HHfd(S
2,Zn).

Proof. Let ψ̃ = [s : α1 : · · · : αn : τ12 : · · · : τn−1,n] ∈ PDfd(S
2,CPNn) and let

ψ = B(ψ̃) = bβ ◦ ψ̃. We need to prove that the degree of ψ is d, or equivalently,
composing with the Plücker embedding, that the degree of Pl ◦ ψ is 2d.

In a suitable basis of ΛnC2n+1, the map Pl ◦ψ = Pl ◦ bβ ◦ ψ̃ : S2 → PΛnC2n+1 is
given by the projectivization of the vector whose components are the n×n minors
of the n× (2n+ 1) matrix

(α/s, In, −(α tα+ sT )/2s2)

(notation as in expressions (5) and (6)). To study the degree of Pl ◦ ψ we will
multiply the components of the vector formed by the n by n minors of this matrix
by a suitable homogenizing factor h so as to obtain a vector whose components are
polynomials without common factors. Since all the minors of the matrix above are
homogeneous rational functions of degree 0, and since one of them is 1, the degree
of Pl ◦ ψ must be equal to the degree of the homogenizing factor h.

Note that the expressions α2
i /s

2, 1 ≤ i ≤ n, and τ2jk/s
2, 1 ≤ j, k ≤ n, appear

as minors of the matrix (α/s, In, −(α tα + sT )/2s2). Since s, αi and τjk cannot
vanish simultaneously, h must be a multiple of s2. This implies that the degree of
Bβ(ψ̃) is at least d, proving (i).
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If ψ ∈ PDfd,0(S
2,CPNn) we can use the assumption that s has simple zeros

z1, z2, . . . , zd and α1(zm) 6= 0, 1 ≤ m ≤ d. Since the denominators of all the
minors divide a power of s, the homogenizing factor h can only have roots at the
zeros z1, z2, . . . , zd of s. Performing row operations on the matrix (α/s, In,−(α tα+
sT )/2s2) does not alter the map Pl ◦ ψ. So to row i, 2 ≤ i ≤ n, let us add the first
row times the factor

−α1αi + sτ1i
α2
1

,

so as to obtain zeros in the n+ 2 column, rows 2 to n.
Then, for 2 ≤ i ≤ n, the (i, 1)-entry of the new matrix becomes τ1i/α1, the

(i, 2)-entry becomes

−α1αi + sτ1i
α2
1

,

the (i, n+ 2)-entry becomes 0 and the (i, j)-entry, n+ 3 ≤ j ≤ 2n+ 1 becomes

α1τji + αiτ1j + αjτi1
2sα1

−
τ1iτ1j
2α2

1

.

Here is where the magic appears: since ψ̃ ∈ PDfd,0(S
2,CPNn), the equations





α′
1αj − α1α

′
j = sτ ′1j − s′τ1j

α′
jαi − αjα

′
i = sτ ′ji − s′τji

α′
iα1 − αiα

′
1 = sτ ′i1 − s′τi1

must hold for 1 < i, j < n (when i = j, define τij = 0). Multiplying the first
equation by αi, the second by α1, the third by αj , and adding, the left hand side
cancels, and we obtain the equation

s′(α1τji + αiτ1j + αjτi1) = s(α1τ
′
ji + αiτ

′
1j + αjτ

′
i1).

Therefore, the matrix obtained after doing these row operations and multiplying
the first row by 2s2 is given by
(19)


2sα1 2s2 0 · · · 0 −α2
1 (−α1αj − sτ1j)1j

(
τ1i
α1

)
i1

(
−α1αi+sτ1i

α2
1

)
i2

In−1 0
(
α1τ

′
ji+αiτ

′
1j+αjτ

′
i1

2s′α1
− τ1iτ1j

2α2
1

)
ij




As before, multiply the components of the vector formed by the n × n minors

of this matrix by a suitable homogenizing factor ĥ to obtain a vector whose com-
ponents are polynomials without common factors. The same argument as before

shows that ĥ can only vanish at the zeros of s′ and α1, which by hypothesis are
different from those of s.

But then the component corresponding to Eβ (i.e. the minor of columns 2 to
n+1) is, on the one hand equal to the homogenizing factor h (which has zeros only

at the zeros of s), and on the other hand equal to 2s2ĥ. Since this last expression
only vanishes to order 2 at the zeros of s, the homogenizing factor h must be a
constant multiple of s2. Since s has degree d, h has degree 2d, and we conclude
that the degree of Pl ◦ ψ is 2d, which implies that the degree of ψ = Bβ(ψ̃) is d.

�



22 LUIS FERNÁNDEZ

Now we must prove two things: first, that Bβ(PD
f
d,0(S

2,CPNn)) is open in

HHfd(S
2,Zn), and second, that every ψ ∈ HHfd(S

2,Zn) is in the image of

Bβ(PD
f
d,0(S

2,CPNn)) for some β. What we will actually do is, given ψ ∈

HHfd(S
2,Zn), describe an open subset of HHfd(S

2,Zn) containing ψ (essentially

the set of those ψ̂ so that dim(ψ̂(z) ∩ Ēβ) ≤ 1 ∀z) and show that it equals

Bβ(PD
f
d,0(S

2,CPNn)).

First we need some tools. Note that the ‘trouble’ for ψ̃ = Bβ(ψ) only happens
at the zeros of its first component s. These points correspond, for the map ψ, to
incidence with the n-plane Ēβ . This motivates the following definition.

Definition 6. For F ∈ Zn, let

I(≥k)

F = {P ∈ Zn : dim(F ∩ P ) ≥ k},

I(k)

F = {P ∈ Zn : dim(F ∩ P ) = k}

The relationship between the vanishing of s and the variety I(≥1)

Ēβ
is clarified in

the following lemma.

Lemma 6.

(i) Let ψ ∈ HHfd(S
2,Zn) and β = {E0, E1, . . . , En, Ē1, . . . , Ēn} an isotropic basis

of CNn . Write Cβ(ψ) = [s : α1 : · · · : αn : τ12 : · · · : τn−1,n]. Then

ψ(z) ∈ I(≥1)

Ēβ
=⇒ s(z) = 0.

(ii) Let ψ̃ = [s : α1 : · · · : αn : τ12 : · · · : τn−1,n] ∈ PDfd(S
2,CPNn). Then, if s has

only simple zeros (in particular if ψ̃ ∈ PDfd,0(S
2,CPNn)),

s(z) = 0 =⇒ (Bβ(ψ̃))(z) ∈ I(1)

Ēβ
.

Proof.

(i) If s(z) 6= 0 then ψ(z) is the span of the vectors

αℓ
s
E0 + Eℓ −

n∑

k=1

(αℓαk
2s2

+
τℓk
2s

)
Ek, 1 ≤ ℓ ≤ n,

with s, αi and τjk evaluated at z. This implies ψ(z) ∩ Ēβ = {0}, and therefore
ψ(z) 6∈ I(≥1)

Ēβ
.

(ii) As in the proof of Proposition 5, if s(z) = 0 and α1(z) 6= 0, Bβ(ψ̃) can be
expressed as the subspace spanned by the rows of the matrix (19)




0 0 0 · · · 0 −α2
1 (−α1αj)1j

(
τ1i
α1

)
i1

(
−αi

α1

)
i2

In−1 0
(
α1τ

′
ji+αiτ

′
1j+αjτ

′
i1

2s′α1
− τ1iτ1j

2α2
1

)
ij




where all the functions involved are evaluated at z (note that since s has only simple

roots, s′(z) does not vanish). This implies that (Bβ(ψ̃))(z) ∩ Ēβ = 〈−α1(α1Ē1 +

· · ·+ αnĒn)〉, and therefore (Bβ(ψ̃))(z) ∈ I(1)

Ēβ
.

If s(z) = 0 and α1(z) = 0, note that since ψ̃ satisfies equation (7), and since s
has only simple roots, not all the αi, 1 ≤ i ≤ n, can vanish simultaneously at any
of the zeros of s, for otherwise equation (7) would imply that the τij also vanish
at that point, which is impossible. Therefore we can proceed as in the proof of
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Proposition 5 to obtain an expression similar to (19) using αi instead of α1 and
then use the same argument as in the last paragraph.

�

Now the idea is the following. The variety I(≥1)

Ēβ
generates the codimension 2

homology of Zn. Therefore a map ψ ∈ HHfd(S
2,Zn) will intersect I

(≥1)

Ēβ
at exactly

d points, counted with multiplicity. If we are able to choose a basis β so that ψ
intersects I(≥1)

Ēβ
transversely and only in I(1)

Ēβ
, it will do so at d distinct points, and

therefore s will have d distinct roots; with some additional light conditions on β,

this will imply that Cβ(ψ) lies in PDfd,0(S
2,CPNn).

It is for this reason that we now study some properties of the sets I(≥k)

Ēβ
. The

following is well known.

Lemma 7. Let F ∈ Zn. The set I(≥k)

F is a subvariety of Zn of codimension
k(k + 1)/2 and I(k)

F is an open subvariety of I(≥k)

F .

Proof. Let {F1, F2, . . . , Fn} be a basis of F . Then I(≥k)

F can be expressed as

I(≥k)

F = {P ∈ Zn : Pl(P ) ∧ Fi1 ∧ Fi2 ∧ · · · ∧ Fin−k+1
= 0, 1 ≤ i1, . . . , in−k+1 ≤ n}.

Thus I(≥k)

F is a projective variety. This description also shows that, for all k, I(≥k+1)

F

is a proper closed subvariety of I(≥k)

F . Hence, since I(≥k)

F = I(k)

F ∪ I(≥k+1)

F , I(k)

F must
be an open subvariety of I(≥k)

F .
To compute the dimension of I(≥k)

F consider the incidence correspondence

Ψk = {(Γ, P ) : Γ ⊂ P} ⊂ Gr(k, F )×Zn.

The projection into the first factor is onto with the fiber over Γ ∈ Gr(k, F ) being the
set of pairs (Γ,Γ⊕W ) whereW is an isotropic (n−k)-plane lying in (Γ⊕ Γ̄)⊥. This
set is isomorphic to Zn−k and hence irreducible of dimension (n− k)(n− k+ 1)/2.
Hence Ψk is irreducible of dimension k(n−k)+(n−k)(n−k+1)/2 = n(n+1)/2−
k(k + 1)/2 (see for example [14], Lecture 11). Since the variety I(≥k)

F is the image
of Ψk under the second projection, which is one-to-one except in the closed subset
I(≥k+1)

F ⊂ I(≥k)

F , we have that I(≥k)

F is also irreducible with codimension k(k + 1)/2.
�

The following lemma gives a criterion for transversality. It is also proved that
I(≥1)

F generates the codimension 2 homology of Zn.

Lemma 8. Let F ∈ Zn and let P ∈ I(1)

F . Write P = 〈P1〉 ⊕ P ′, where P1 ∈ P ∩ F
and P ′ ⊥ P1. Let 0 6= P0 ∈ (P ⊕ P̄ )⊥ with P0 = P̄0. Then

(i) P⊥ = 〈P0〉 ⊕ 〈P̄1〉 ⊕ (P + F ) ∩ P⊥.
(ii) TPZn = Hom(〈P1〉, 〈P0〉)⊕Hom(P ′, 〈P0〉)⊕HomISO(P, 〈P̄1〉⊕ (P +F )∩P⊥).

(Recall that HomISO(V1, V2) was defined at the beginning of Section 7).
(iii) TP I

(1)

F = Hom(P ′, 〈P0〉)⊕HomISO(P, 〈P̄1〉 ⊕ (P + F ) ∩ P⊥). Therefore I(1)

F is
regular.

(iv) (Criterion for transversality). Let γ : S2 → Zn be a holomorphic curve such
that P = γ(z) ∈ I(1)

F for some z ∈ S2. Let 0 6= P1 ∈ P ∩ F and suppose that
γ′(z)(P1) ∈ (P ⊕ P̄ )⊥. Then γ intersects I(1)

F transversely at P if and only if
γ′(z)(P1) 6= 0.
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(v) The variety I(≥1)

F intersects a generator of H2(Zn,Z) = Z [21] transversely
in a single point. Therefore a curve in Zn that intersects I(≥1)

F transversely
and only at regular points of I(≥1)

F has degree equal to the number of points of
intersection.

Proof. (i) It is clear that P⊥ ⊇ 〈P0〉 + 〈P̄1〉 + (P + F ) ∩ P⊥. In addition, since
P +F has dimension 2n− 1, (P +F ) ∩P⊥ must have dimension at least n− 1, so
we only have to prove linear independence.

Suppose that a0P0 + a1P̄1 + vP + vF = 0, where a0, a1 ∈ C, vP ∈ P , vF ∈ F ,
and vP + vF ∈ (P + F ) ∩ P⊥. Since (P1, P0) = (P1, vP ) = (P1, vF ) = 0, we must
have 0 = (P1, a0P0 + a1P̄1 + vP + vF ) = a1 (P1, P̄1), so a1 = 0.

Therefore a0P0 + vP = −vF , so since (P0, vP ) = (vP , vP ) = (vF , vF ) = 0, we
must have a20 (P0, P0) = (a0P0 + vP , a0P0 + vP ) = (vF , vF ) = 0, so a0 = 0 and
therefore vP + vF = 0.

(ii) Let L ∈ Hom(P, P⊥). Then L can be written as L = L0 + L1 where L0 ∈
Hom(P, 〈P0〉) and L1 ∈ Hom(P, 〈P̄1〉 ⊕ (P + F ) ∩ P⊥).

The map L0+L1 is in TPZn if and only if, for all u ∈ P , (L0(u)+L1(u), u) = 0.
Since (L0(u), u) = 0 for all u ∈ P , (L0(u)+L1(u), u) = 0 if and only if (L1(u), u) =
0, i.e. if and only if L0 ∈ Hom(P, 〈P0〉) = Hom(〈P1〉, 〈P0〉) ⊕ Hom(P ′, 〈P0〉), L1 ∈
HomISO(P, 〈P̄1〉 ⊕ (P + F ) ∩ P⊥).

(iii) The geometric idea is the following: given a curve in I(≥1)

F , any curve in C2n+1

tracing the intersection between the given curve and F must have derivative con-
tained in F , which essentially implies the claim.

More algebraically, the variety I(≥1)

F ⊂ Zn is the zero locus of f(Q) = Pl(Q) ∧
Pl(F ). Thus TP I

(1)

F consists of those L ∈ TPZn such that dfP (L) = 0. We need to

prove that L(P1) ∈ (F + P ) ∩ P⊥.
So let L ∈ TPZn and let {P2, . . . , Pn} be a basis of P ′. Take curves ci(t) in C2n+1

such that ci(0) = Pi and c
′
i(0) = L(Pi) ∈ P⊥, 1 ≤ i ≤ n. Then, since P1 ∈ F ,

dfP (L) =
d

dt |t=0

c1(t) ∧ · · · ∧ cn(t) ∧ Pl(F )

= c′1(0) ∧ P2 ∧ · · · ∧ Pn ∧ Pl(F )

= L(P1) ∧ P2 ∧ · · · ∧ Pn ∧ Pl(F ).

The last expression is 0 if and only if L(P1) ∈ (F +P )∩P⊥. This proves the claim.

(iv) Since TP I
(1)

F has codimension 1 in TPZn, proving transversality is equivalent
to showing that 0 6= γ′(z) 6∈ TP I

(1)

F . Using the hypotheses on γ and part (iii),
γ′(z) ∈ TP I

(1)

F if and only if γ′(z)(P1) ∈ ((P + F ) ∩ P⊥) ∩ (P ⊕ P̄ )⊥ = {0}.

(v) The curve G : CP1 → Zn given by

G([w0 : w1]) =

〈
w0w1P0 + w2

0P1 −
w2

1

2
P̄1

〉
⊕ Pl(P ′)

is a generator of H2(Zn,Z) [21]. This curve intersects I(≥1)

F only at P , i.e. when
w0 = 1, w1 = 0.

Let g(z) ∈ G([1 : z]) be the curve g(z) = zP0 + P1 − z2P̄1. Then g(0) = P1

and g′(0) = P0 6= 0, which implies that 0 6= G′([1 : 0])(P1) = P0 ∈ (P ⊕ P̄ )⊥, and
therefore, by (iv), the curve G intersects TP I

(1)

F transversely at a single point.
�
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Suppose that ψ ∈ HHfd(S
2,Zn). In view of the previous lemma, our goal is now

to find a basis β such that ψ intersects Ēβ = 〈Ē1, . . . , Ēn〉 transversely at d points,
and with some additional properties. This is what we do in the following lemma.

Lemma 9. Given ψ ∈ HHfd(S
2,Zn) there exists a basis β such that the image of

ψ intersects I(≥1)

Ēβ
only at I(1)

Ēβ
and transversely, such that (Cβ(ψ))α1 is not 0 at the

points of intersection, and such that (Cβ(ψ))s is not 0 at the point ∞ ∈ S2.

Proof. The idea is to show that the set of elements Ē ∈ Zn that are ‘bad’ (meaning
that ψ intersects I(≥2)

Ē
, or intersects I(≥1)

Ē
non-transversely, etc) is a proper closed

subset of Zn so its complement is nonempty.
To this end, consider the following subvarieties of Zn:

A1 =
{
Ē ∈ Zn : ψ(z) ∈ I(≥1)

Ē
for some z ∈ S2

and ψ′(z)(P1) = 0, for some P1 ∈ ψ(z) ∩ Ē
}
,

A2 = {Ē ∈ Zn : ψ intersects I(≥2)

Ē
}.

To study A1, consider the incidence correspondence

Ψ1 = {(z, P1, Ē) ∈ S2 × (C2n+1 \ {0})×Zn : P1 ∈ Ē ∩ ψ(z) and ψ′(z)(P1) = 0}.

Then A1 = π3(Ψ1), where π3 denotes projection on the third factor. We calculate
the dimension of π3(Ψ1) as follows. Consider the incidence correspondence

Ψ̂1 = {(z, P1) ∈ S2 × (C2n+1 \ {0}) : P1 ∈ ψ(z) and ψ′(z)(P1) = 0}.

Projection in Ψ̂1 into the first factor is clearly onto S2, and the fiber over z ∈ S2

is the set of pairs (z, P1) such that P1 6= 0 is in the kernel of ψ′(z) : ψ(z) →

(ψ(z))⊥. Since ψ ∈ HHfd(S
2,Zn), ψ′(z) is horizontal, so the image of ψ′(z) lies in

(ψ(z)⊕ ψ(z))⊥. Hence the kernel of ψ′(z) has dimension n− 1 except at the finite

set of points where ψ is singular, where it has dimension n. This implies that Ψ̂1

has dimension n.
Now look at the projection π12 : Ψ1 → Ψ̂1 defined by π12(z, P1, Ē) = (z, P1).

This projection is onto and its fiber over a point (z, P1) ∈ Ψ̂1 is given by {(z, P1, Ē) :
Ē ∋ P1}. Given 0 6= P1 ∈ C2n+1 isotropic, we have

{Ē ∈ Zn : Ē ∋ P1} = {P1 ⊕ Ē′ : Ē′ ∈ Z((P1 ⊕ P̄1)
⊥)},

which is isomorphic to Zn−1 and therefore has dimension n(n− 1)/2. This implies
that Ψ1 has dimension n+ n(n− 1)/2 = n(n+ 1)/2.

Finally consider the projection π3 : Ψ1 → Zn on the third factor. The fiber of
this projection over Ē ∈ Zn consists of the triples (z, P1, Ē) such that ψ(z) ∈ I(≥1)

Ē
,

and 0 6= P1 ∈ Ē ∩ ker(ψ′(z)). The set of z ∈ S2 satisfying the first condition is
finite (because ψ is linearly full) and, for each z in this set, the set of P1 satisfying
the second condition has dimension at least 1. This implies that A1 = π3(Ψ1) is a
subvariety of Zn with codimension at least 1.

To study A2, use the incidence correspondence given by

Ψ2 = {(z, Ē) ∈ S2 ×Zn : ψ(z) ∈ I(≥2)

Ē
}.

Note that A2 = π2(Ψ2), where π2 denotes the projection on the second factor.
Projection over the first factor in Ψ2 is onto and the fiber over z ∈ S2 is the
set of pairs (z, Ē) such that Ē ∈ I(≥2)

ψ(z), which has codimension 3 in Zn. Hence
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dim(Ψ2) = dim(Zn) − 2, which implies that π2(Ψ2) = A2 must be a subvariety of
Zn of codimension at least two.

Therefore we have that A1 and A2 are proper subvarieties of Zn. If β is any basis
such that Ēβ ∈ Zn is outside of these two sets, then ψ does not intersect I(≥2)

Ēβ
, so

ψ intersects I(≥1)

Ēβ
only in I(1)

Ēβ
, and by Lemma 8 (iv), ψ intersects I(1)

Ēβ
transversely.

Now we have to deal with the remaining constraints. Let

A3 = I(1)

ψ(∞) ∩ (Zn \ (A1 ∪ A2)).

The quasi-algebraic variety A3 has codimension 1, and if β is any basis such that
Ēβ 6∈ A3, then Lemma 8 (v), together with Lemma 6 (i), implies that (Cβ(ψ))s
has only d simple zeros, located at the points z where ψ(z) ∈ I(1)

Ēβ
. Since ψ ∈ A3,

ψ(∞) 6∈ I(1)

Ēβ
, so Lemma 6 (ii) implies that (Cβ(ψ))s is not 0 at infinity.

Finally, let β = {E0, E1, . . . , En, Ē1, . . . , Ēn} be a basis such that Ēβ ∈ Zn is
outside of A3. For convenience, write (Cβ(ψ)) = [s : α1 : · · · : αn : τ12 : · · · :
τn−1,n]. Since s has only simple zeros, equation (7) implies that at least one of
the αi, 1 ≤ i ≤ n, must be nonzero at the zeros of s. Therefore we can find a
matrix (aij)ij ∈ U(n) such that a11α1 + · · ·+ a1nαn is not zero where s vanishes.
Then the basis β′ = {E0,

∑n
i=1 a1iEi, . . . ,

∑n
i=1 aniEi,

∑n
i=1 ā1iĒi, . . . ,

∑n
i=1 āniĒi}

is isotropic and satisfies Ēβ′ = Ēβ 6∈ A3 and (Cβ′(ψ))α1 = a11α1 + · · · + a1nαn,
which by hypothesis does not vanish at the zeros of s.

�

We restate Theorem 2 here and complete its proof.

Theorem 2. Given ψ ∈ HHfd(S
2,Zn) there exists a basis β and an open set

Uβ ⊆ HHfd(S
2,Zn) containing ψ such that

Bβ : PDfd,0(S
2,CPNn) → Uβ

is an algebraic isomorphism.

Proof. Let β be a basis with the properties of Lemma 9. Then consider the set

Uβ = {ψ̂ ∈ HHfd(S
2,Zn) : Im(ψ̂) ∩ I(≥2)

Ēβ
= ∅, ψ̂ intersects I(1)

Ēβ
transversely,

(Cβ(ψ̂))s(∞) 6= 0, and (Cβ(ψ̂))α1(z) 6= 0 at the points of intersection}.

The set Uβ ⊆ HHfd(S
2,Zn) is defined by open conditions and it is nonempty since

ψ ∈ Uβ .

So let ψ̂ ∈ Uβ and write Cβ(ψ̂) = [s : α1 : · · · : αn : τ12 : · · · : τn−1,n]. Since ψ̂ in-
tersects I(≥1)

Ēβ
transversely and only in I(1)

Ēβ
, which by Lemma 8 (iii) is regular, Lemma

8 (v) implies that ψ̂ intersects I(1)

Ēβ
only at d distinct points {ψ̂(z1), . . . , ψ̂(zd)}.

Now Lemma 6 (ii) implies that s(zℓ) = 0, 1 ≤ ℓ ≤ d. Since s(∞) 6= 0, zℓ ∈ C

for 1 ≤ ℓ ≤ d. Also, since ψ̂ ∈ Uβ , α1(zi) 6= 0, and therefore the degree of Cβ(ψ̂)
is at least d. But on the other hand Proposition 5 (i) asserts that this degree

cannot exceed d. Therefore Cβ(ψ̂) has degree d, s has d distinct roots zm ∈ C and

α1(zℓ) 6= 0 for 1 ≤ ℓ ≤ d. This implies that Cβ(Uβ) ⊆ PDfd,0(S
2,CPNn).

On the other hand, from Proposition 5 (ii) and Lemma 6 (ii) it follows that

Bβ(PD
f
d,0(S

2,CPNn)) ⊆ Uβ . Since Cβ is, by definition, the inverse of Bβ and they
are both algebraic, the proof is complete.

�
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