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THE DIMENSION OF THE SPACE OF HARMONIC 2-SPHERES

IN THE 6-SPHERE

LUIS FERNÁNDEZ

Abstract

Using the twistorial approach and some previous results, we prove the conjecture that the di-
mension of the moduli space of harmonic maps of area 4πd from the 2-sphere to the 2n-sphere is
2d + n2 for the particular case n = 3.

1. Introduction

Recall ([3]) that a harmonic map from S2 to S2n can be written as the compo-
sition of a holomorphic, horizontal map from S2 to Zn = SO(2n + 1)/U(n) (the
’twistor lift’), with plus or minus the natural projection from Zn to S2n. The main
invariant of these harmonic maps is the degree, defined as their area divided by 4π.

We will denote by Harmf
d(S2, S2n) the space of harmonic maps from S2 to S2n

of degree d not lying in a lower dimensional subsphere, and by HHf
d(S2,Zn) the

space of linearly full horizontal holomorphic maps from S2 to Zn of degree d. Using
the twistorial approach it follows that Harmf

d(S2, S2n) is isomorphic to the disjoint

union of two copies of HHf
d(S2,Zn) (see [7] for details).

While the dimension and structure of Harmf
d(S2, S4) has been thoroughly studied

([10], [11], [12], [13]), the only case that is completely understood for n ≥ 3 is
when d = n(n+1)/2 ([1]). However, it is known that Harmf

d(S2, S2n) is connected
([9], [8], [6]), and the fundamental group of these spaces was calculated in [7].

Based on heuristic arguments, in [2] it is conjectured that the dimension of
Harmf

d(S2, S2n) is equal to 2d + n2. This figure is correct for all the known cases,
but the conjecture has been open since. In this paper we will use the results in [6]
to prove this conjecture for the particular case n = 3.

Our proof makes use of the following. In [6] it was shown that HHf
d(S2,Zn) is

birrationally equivalent to the moduli space of holomorphic maps

ψ : S2 → CP
n(n+1)/2

of degree d, with

ψ(z) = [s(z) : α1(z) : . . . : αn(z) : τ12(z) : . . . : τ1n(z) : τ23(z) : . . . : . . . : τn−1,n(z)],

satisfying

α′

iαj − αiα
′

j = sτ ′ij − s′τij , (1)

and the additional condition given by

W

((α
s

)
′

)
6≡ 0, (2)
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which guarantees that the corresponding harmonic map from S2 to S2n will be
linearly full. Note that, for convenience, we have absorbed the constant factor ap-
pearing in equation (2.13) of [6] in the functions τjk. We also take τkj = −τjk.

We use the notation

W

(
(p1, p2, . . . , pk)

)
:=

∣∣∣∣∣∣∣∣∣

p1 p2 . . . pk

p′1 p′2 . . . p′k
...

...
...

p
(k)
1 p

(k)
2 . . . p

(k)
k

∣∣∣∣∣∣∣∣∣

, (3)

and where convenient, we drop the argument ‘(z)’ in all the functions involved.
The moduli space of maps ψ as above satisfying (1) and (2) will be denoted by
PDf

d(S2,CP
n(n+1)/2).

We will show that the dimension of PDf
d(S2,CP

6) is equal to 2d+9, which implies

that HHf
d(S2,Z3), and therefore Harmf

d(S2, S6), also have dimension 2d + 9, as
conjectured.

2. A Lower Bound on the Dimension of the Moduli Space

We will regard the functions s, αi, τjk involved in equation (1) as polynomials
of degree less than or equal to d in one complex variable z and without common
factors. The vector space of polynomials of degree less than or equal to d will be
denoted by C[z]d.

In this section we show that there is a 2d + 10-dimensional set of polynomials
{(s(z), α1(z), α2(z), α3(z), τ12(z), τ23(z), τ31(z))} ⊂ (C[z]d)

7 in one complex vari-
able z, of degree less than or equal to d with s having degree d, and without a
common factor to all of them, that satisfy (1) and (2). After projectivising this
proves the inequality dim(PDf

d(S2,CP
6)) ≥ 2d+ 9.

This was shown in [6] for d > 7. Essentially the same proof works for d = 7; we
outline the proof for d ≥ 7 for the sake of completeness.

Equation (1) is equivalent to

αjα
′

i − αiα
′

j = s2
(τij
s

)
′

, 1 ≤ i < j ≤ 3, (4)

which is equivalent to
αjα

′

i − αiα
′

j

s2
has no residues (5)

and

τij = s

∫
αjα

′

i − αiα
′

j

s2
dz is a polynomial of degree ≤ d. (6)

Let

E(αi, αj)(sm) := lim
z→sm

(
(z − sm)2(αj(z)α

′

i(z) − αi(z)α
′

j(z))

(s(z))2

)
′

.

If s has only simple zeroes at the points {s1, s2, . . . , sd}, then equation (5) is
equivalent to

E(αi, αj)(sm) = 0, 1 ≤ i, j ≤ 3, m = 1, 2, . . . , d− 1, (7)

and (6) is implicitly satisfied. Note that equation (7) implies that (αjα
′

i −αiα
′

j)/s
2

has no residues at sm, 1 ≤ m ≤ d− 1, so this function cannot have residues at all.
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Let

F (αi)(sm) := lim
z→sm

[(
(z − sm)2

(s(z))2

)′

α′

i(z) +
(z − sm)2

(s(z))2
α′′

i (z)

]
,

and note that, if F (αi)(sm) = 0 and αi(sm) = 0 for some i and some m, then
E(αi, αj)(sm) = 0 for all j.

Lemma 1. Let d ≥ 7. If s(z) is any polynomial of degree d with simple zeroes at
the points s1, s2, . . . , sd, then there exist polynomials α1(z), α2(z), α3(z) of degree
less than or equal to d, and not simultaneously vanishing at any of the points sm,
that satisfy conditions (7) and (2).

Proof. Let s(z) =

d∏

i=1

(z − si). Let α1(z) be a solution of the system

α1(sm) = 0, m = 1, 2, 3

F (α1)(sm) = 0, m = 1, 2, 3

which is not a multiple of s(z) (note that s(z) is also a solution of this system) and
such that α1(sj) 6= 0 for 4 ≤ j ≤ d.

Now find independent polynomials α2(z), α3(z) of degree d satisfying

E(α1, α2)(sm) = 0, 4 ≤ m ≤ d− 1 (8)

E(α1, α3)(sm) = 0, 4 ≤ m ≤ d− 1 (9)

E(α2, α3)(sm) = 0, m = 2, 3, (10)

which are independent from s(z) and α1(z) and do not vanish simultaneously at
any of the points sm, m = 1, 2, 3. Note that equation (10) is an intersection of
two quadrics in the 5-dimensional space of solutions of equations (8) or (9); this
guarantees the existence of these polynomials.

Using the relation

α1(sm)E(α2, α3)(sm) + α2(sm)E(α3, α1)(sm) + α3(sm)E(α1, α2)(sm) = 0, (11)

for 1 ≤ m ≤ d, it becomes clear that this construction gives a solution of (7).
By construction, the polynomials α1, α2 and α3 do not all vanish simultaneously

at any of the points sm; thus the polynomials s, α1, α2, α3 have no common factors.
Also by construction, the set {s, α1, α2, α3} is a linearly independent set in C[z]d,
so condition (2) is satisfied.

Now that we know that the set of solutions of (1) and (2) with s having simple
zeroes is nonempty for d ≥ 7, we only have do a simple count to find a lower bound
for the dimension of this set.

Proposition 1. For d ≥ 6, the dimension of the moduli space of linearly full
harmonic maps from S2 to S6 of degree d is at least 2d+ 9.

Proof. For d = 6, [1] gives dim(Harmf
6 (S2, S6)) = 2 · 6 + 9.

For d ≥ 7, define the open subset of C4d+4 given by

S = {(s, α1, α2, α3) ∈ (C[z]d)
4 : s has d distinct roots}.
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Let

R = {(s, α1, α2, α3) ∈ S : W

((α
s

)
′

)
6≡ 0 and E(αi, αj)(sm) = 0,

1 ≤ i < j ≤ 3 , 1 ≤ m ≤ d− 1,where {s1, s2, . . . , sd} are the roots of s}.

Using relation (11) and the fact that the sum of the residues of a meromorphic
function is 0, we have d + 3 relations between the equations of the system (7), so
this system has no more than 2d−3 independent homogeneous equations and 4d+4
variables. The set R is the intersection of the variety given by equations (7) with
the open set given by condition (2). By Lemma 1, R is not empty. Therefore its
dimension is at least 2d+ 7.

Finally, define

A = {(s, α1, α2, α3, τ12, τ23, τ31) ∈ (C[z]d)
7 : (s, α1, α2, α3) ∈ R

and τij = aijs+ s

∫
αjα

′

i − αiα
′

j

s2
dz, 1 ≤ i < j ≤ 3},

where aij are arbitrary complex numbers (integration constants).
The elements of A are solutions of (1) satisfying (2). Its dimension is the di-

mension of R plus the three extra degrees of freedom given by the integration
constants. Thus, dim(A) ≥ 2d+10, and therefore we have PA ⊂ PDf

d(S2,CP
6) and

dim(PA) ≥ 2d+ 9.
Since dim(Harmf

6 (S2, S6)) = dim(HHf
d(S2,Z3)) = dim(PDf

d(S2,CP
6)) ≥ 2d+ 9,

the result follows.

Remark 1. In the proof of Proposition 1 we have used that birrational trans-
formations preserve the dimension. However, we do not really need to use this fact
since the set A is contained in the regular part of the birrational transformation
given in [6].

Of course we understand dimension as the top dimension of the irreducible com-
ponents, as we do not know whether any of the varieties involved has pure dimen-
sion.

3. An Upper Bound on the Dimension of the Moduli Space

Using the notation α = (α1, α2, α3) and t = (τ23, τ31, τ12), equation (1) can be
written as

α× α′ = st′ − s′t, (12)

where × denotes the cross product in C3.

Lemma 2. If [s : α1 : α2 : α3 : τ12 : τ23 : τ13] is a solution of degree d of (12)
satisfying (2), where all the components are polynomials, then

W (s, t) :=

∣∣∣∣∣∣∣

s τ23 τ31 τ12
s′ τ ′23 τ ′31 τ ′12
s′′ τ ′′23 τ ′′31 τ ′′12
s′′′ τ ′′′23 τ ′′′31 τ ′′′12

∣∣∣∣∣∣∣
=

(det(α, α′, α′′))2

s2
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(so it is a perfect square) and

α =
st′ × t′′ − s′t× t′′ + s′′t× t′√

W (s, t)
.

Proof. We have

α× α′ = st′ − s′t.

Differentiating this equation we obtain

α× α′′ = st′′ − s′′t,

and differentiating again,

α× α′′′ + α′ × α′′ = st′′′ − s′′′t+ s′t′′ − s′′t′.

Taking the cross product of the first two equations and using the formula (u ×
v) × (u× w) = det(u, v, w)u we get

det(α, α′, α′′)α = s(st′ × t′′ − s′t× t′′ + s′′t× t′),

and taking the cross product with the third equation we get

(det(α, α′, α′′))2 = s2W (s, t).

Condition W ((α/s)′) 6≡ 0 implies that det(α, α′, α′′) 6≡ 0, and we obtain the
desired formula.

The previous formula asserts that the elements of PDf
d(S2,CP

6) are completely
characterised by the polynomials s, τ12, τ13 and τ23. Consider the map

Ξ : PDf
d(S2,CP

6) → Gr(4,C[z]d)

given by

Ξ([s : α1 : α2 : α3 : τ12 : τ13 : τ23]) = 〈s, τ23, τ31, τ12〉,

where Gr stands for the Grassmannian and 〈v1, v2, . . . , vk〉 denotes, in general, the
subspace spanned by the vectors v1, v2, . . . , vk.

Let

Π : Gr(4,C[z]d) → P(C[z]4d−12)

be the map given by

Π(〈g1, g2, g3, g4〉) = [W ((g1, g2, g3, g4))],

where W ((g1, g2, g3, g4)) is the Wronskian of the polynomials g1, g2, g3, g4, as de-
fined in (3). Lemma 2 asserts that the image of Π ◦ Ξ lies in the submanifold Q
of P(C[z]4d−12) defined as the projectivisation of the set of non-zero polynomials
in C[z]4d−12 that are perfect squares. In other words, the image of Ξ lies in the
subvariety Π−1(Q) of Gr(4,C[z]d).

Let

L : Λ4
C[z]d → C[z]4d−12

be the linear map defined in basic elements g1 ∧ g2 ∧ g3 ∧ g4 by

L(g1 ∧ g2 ∧ g3 ∧ g4) = W ((g1, g2, g3, g4)).
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Taking the usual basis {zk}d
k=0 of C[z]d it is a straightforward computation to

show that, for 0 ≤ i < j < k < ℓ ≤ d,

L(zi ∧ zj ∧ zk ∧ zℓ) = (ℓ− k)(ℓ − j)(ℓ− i)(k − j)(k − i)(j − i)zi+k+j+ℓ−6.

This shows, in particular, that L is onto.
Let K ⊂ Λ4C[z]d be the kernel of L, and let

Π̂ : P(Λ4
C[z]d −K) → P(C[z]4d−12)

be the projectivisation of L.
Let Pl : Gr(4,C[z]d) → P(Λ4C[z]d) denote the Plücker embedding. Note that

Pl(Gr(4,C[z]d)) is disjoint from PK (the projectivisation of K), and we have Π =
Π̂ ◦ Pl, giving the following diagram:

PDf
d(S2,CP

6)

P(Λ4C[z]d −K)

Π−1(Q) ⊂ Gr(4,C[z]d) P(C[z]4d−12) ⊃ Q- -

?
Π̂

Π

�
�

�
��3

Pl

Ξ

The following result appears in [5], pp. 127–128, and in the references cited
therein, for the case Gr(2,C[z]d). We include a proof for Gr(4,C[z]d); essentially the
same argument would work for the corresponding (Wronski) map in Gr(n,C[z]d).

Lemma 3. For all q ∈ P(C[z]4d−12), the set Π−1(q) is finite.

Proof. If q ∈ P(C[z]4d−12), then Π−1(q) is the set of points in Gr(4,C[z]d)
whose image under the Plücker embedding lies in Π̂−1(q). Now, Π̂−1(q) is an affine
subspace of P(Λ4

C[z]d) whose closure is a projective subspace of codimension (4d−
12) of the form [Cp+K]. Note that [Cp+K] = Π̂−1(q)∪PK. Since the dimension of
Gr(4,C[z]d) is 4d−12, and since Pl(Gr(4,C[z]d))∩ PK is empty, Pl(Gr(4,C[z]d))∩
Π̂−1(q) must be nonempty for all q ∈ P(C[z]4d−12).

If V were an open subvariety of dimension greater than 0 contained in the intersec-
tion of Pl(Gr(4,C[z]d)) and Π̂−1(q), then the closure of V would contain points lying
in both Pl(Gr(4,C[z]d)) and PK. This is impossible since Pl(Gr(4,C[z]d))∩PK = ∅.

Therefore the set

Π−1(q) = Pl−1
(
Pl(Gr(4,C[z]d)) ∩ Π̂−1(q)

)

is a subvariety of dimension 0, so it must consist of a finite number of points.

This implies, in particular, that the dimension of the subvariety Π−1(Q) is the
same as the dimension of Q, which is 2d− 6, and we have the following result.

Proposition 2. The dimension of Harmd(S
2, S6) is less than or equal to 2d+9.

Proof. Since the fiber of the map Ξ : PDf
d(S2,CP

6) → Gr(4,C[z]d) has di-

mension less than or equal to 15, and since Ξ (PDf
d(S2,CP

6)) lies in a variety of

dimension 2d− 6, it follows that dim(PDf
d(S2,CP

6)) ≤ 2d+ 9. Therefore,

dim(Harmf
d(S2, S6)) = dim(HHf

d(S2,Z3)) = dim(PDf
d(S2,CP

6)) ≤ 2d+ 9
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Theorem 1. The (top) dimension of the moduli space of harmonic maps of
area 4πd from S2 to S6 is 2d+ 9.

Proof. Immediate from Proposition 1 and Proposition 2.
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of the corrections.

References

1. J. L. M. Barbosa, ‘On minimal immersions of S2 into S2m’, Trans. Amer. Math. Soc. 210
(1975) 75–106.

2. J. Bolton, L. M. Woodward, ‘Moduli spaces of harmonic 2-spheres’, Geometry and Topol-
ogy of Submanifolds, IV (F. Dillen and L. Verstraelen, eds.), World Scientific, Singapore
(1992) 143–151.

3. E. Calabi, ‘Minimal immersions of surfaces in Euclidean spheres’, J. Differential Geom. 1
(1967) 111–125.

4. Q. S. Chi, L. Fernández, S. Wu, ‘Normalized potentials of minimal surfaces in spheres’,
Nagoya Math. J. 156 (1999) 187–214.

5. A. Eremenko, A. Gabrielov, ‘Rational functions with real critical points and the B. and M.
Shapiro conjecture in real enumerative geometry’, Ann. of Math. (2), 155 (2002), 105-129.

6. L. Fernández, ‘On the moduli space of superminimal surfaces in spheres’, Int. J. Math.
Math. Sci. Vol. 2003, N. 44 (2003) 2803–2827.

7. M. Furuta, M. A. Guest, M. Kotani, Y. Ohnita, ‘On the fundamental group of the space
of harmonic 2-spheres in the n-sphere’, Math. Z. 215 (1994) N. 4, 303–318.

8. M. Guest, Y. Ohnita, ‘Group actions and deformations for harmonic maps’, J. Math. Soc.
Japan 45 (1993) N. 4, 671–704.

9. M. Kotani, ‘Connectedness of the moduli space of minimal 2-spheres in S2m’, Proc. Amer.
Math. Soc. 120 (1994) N. 3, 803–810.

10. B. Loo, ‘The space of harmonic maps of S2 into S4’, Trans. Amer. Math. Soc. 313 (1989)
81–102.

11. J. L. Verdier, ‘Two dimensional σ-models and harmonic maps from S2 to S2n’, Group
Theoretical Methods in Physics, (Proc. 11th int. Colloq. Istanbul 1982), Lecture Notes in
Physics 180, Springer Verlag, Berlin (1983) 136–141.

12. J. L. Verdier, ‘Applications harmoniques de S2 dans S4’, Geometry Today (Roma 1984)
(E. Arbarello, C. Procesi, E. Strickland, eds.), Progr. Math. 60, Birkhäuser, Boston
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