THE DIMENSION OF THE SPACE OF HARMONIC 2-SPHERES IN THE 6-SPHERE

LUIS FERNÁNDEZ

Abstract

Using the twistorial approach and some previous results, we prove the conjecture that the dimension of the moduli space of harmonic maps of area $4\pi d$ from the 2-sphere to the 2n-sphere is $2d + n^2$ for the particular case n = 3.

1. Introduction

Recall ([3]) that a harmonic map from S^2 to S^{2n} can be written as the composition of a holomorphic, horizontal map from S^2 to $\mathcal{Z}_n = SO(2n+1)/U(n)$ (the 'twistor lift'), with plus or minus the natural projection from \mathcal{Z}_n to S^{2n} . The main invariant of these harmonic maps is the degree, defined as their area divided by 4π .

We will denote by $\operatorname{Harm}_{d}^{f}(S^{2}, S^{2n})$ the space of harmonic maps from S^{2} to S^{2n} of degree d not lying in a lower dimensional subsphere, and by $\operatorname{HH}^{f}_{d}(S^{2}, \mathbb{Z}_{n})$ the space of linearly full horizontal holomorphic maps from S^2 to \mathcal{Z}_n of degree d. Using the twistorial approach it follows that $\operatorname{Harm}_d^f(S^2, S^{2n})$ is isomorphic to the disjoint union of two copies of $\operatorname{HH}^{f}_{d}(S^{2}, \mathbb{Z}_{n})$ (see [7] for details).

While the dimension and structure of $\operatorname{Harm}_{d}^{f}(S^{2}, S^{4})$ has been thoroughly studied ([10], [11], [12], [13]), the only case that is completely understood for $n \ge 3$ is when d = n(n+1)/2 ([1]). However, it is known that $\operatorname{Harm}_{d}^{f}(S^{2}, S^{2n})$ is connected ([9], [8], [6]), and the fundamental group of these spaces was calculated in [7].

Based on heuristic arguments, in [2] it is conjectured that the dimension of $\operatorname{Harm}_{d}^{f}(S^{2}, S^{2n})$ is equal to $2d + n^{2}$. This figure is correct for all the known cases, but the conjecture has been open since. In this paper we will use the results in [6] to prove this conjecture for the particular case n = 3.

Our proof makes use of the following. In [6] it was shown that $\operatorname{HH}_{d}^{f}(S^{2}, \mathbb{Z}_{n})$ is birrationally equivalent to the moduli space of holomorphic maps

$$\psi: S^2 \to \mathbb{CP}^{n(n+1)/2}$$

of degree d, with

$$\psi(z) = [s(z) : \alpha_1(z) : \ldots : \alpha_n(z) : \tau_{12}(z) : \ldots : \tau_{1n}(z) : \tau_{23}(z) : \ldots : \tau_{n-1,n}(z)],$$
satisfying

satisfying

$$\alpha_i'\alpha_j - \alpha_i\alpha_j' = s\tau_{ij}' - s'\tau_{ij},\tag{1}$$

and the additional condition given by

$$W\left(\left(\frac{\alpha}{s}\right)'\right) \neq 0,\tag{2}$$

²⁰⁰⁰ Mathematics Subject Classification 53A10 (primary), 53C42 (secondary).

LUIS FERNÁNDEZ

which guarantees that the corresponding harmonic map from S^2 to S^{2n} will be linearly full. Note that, for convenience, we have absorbed the constant factor appearing in equation (2.13) of [6] in the functions τ_{jk} . We also take $\tau_{kj} = -\tau_{jk}$.

We use the notation

$$W\left((p_1, p_2, \dots, p_k)\right) := \begin{vmatrix} p_1 & p_2 & \dots & p_k \\ p'_1 & p'_2 & \dots & p'_k \\ \vdots & \vdots & & \vdots \\ p_1^{(k)} & p_2^{(k)} & \dots & p_k^{(k)} \end{vmatrix},$$
(3)

and where convenient, we drop the argument (z) in all the functions involved. The moduli space of maps ψ as above satisfying (1) and (2) will be denoted by $\text{PD}_d^f(S^2, \mathbb{CP}^{n(n+1)/2})$.

We will show that the dimension of $\text{PD}_d^f(S^2, \mathbb{CP}^6)$ is equal to 2d+9, which implies that $\text{HH}_d^f(S^2, \mathbb{Z}_3)$, and therefore $\text{Harm}_d^f(S^2, S^6)$, also have dimension 2d+9, as conjectured.

2. A Lower Bound on the Dimension of the Moduli Space

We will regard the functions s, α_i , τ_{jk} involved in equation (1) as polynomials of degree less than or equal to d in one complex variable z and without common factors. The vector space of polynomials of degree less than or equal to d will be denoted by $\mathbb{C}[z]_d$.

In this section we show that there is a 2d + 10-dimensional set of polynomials $\{(s(z), \alpha_1(z), \alpha_2(z), \alpha_3(z), \tau_{12}(z), \tau_{23}(z), \tau_{31}(z))\} \subset (\mathbb{C}[z]_d)^7$ in one complex variable z, of degree less than or equal to d with s having degree d, and without a common factor to all of them, that satisfy (1) and (2). After projectivising this proves the inequality dim $(\mathrm{PD}_d^f(S^2, \mathbb{CP}^6)) \geq 2d + 9$.

This was shown in [6] for d > 7. Essentially the same proof works for d = 7; we outline the proof for $d \ge 7$ for the sake of completeness.

Equation (1) is equivalent to

$$\alpha_j \alpha'_i - \alpha_i \alpha'_j = s^2 \left(\frac{\tau_{ij}}{s}\right)', \quad 1 \le i < j \le 3, \tag{4}$$

which is equivalent to

$$\frac{\alpha_j \alpha_i' - \alpha_i \alpha_j'}{s^2} \quad \text{has no residues} \tag{5}$$

and

$$\tau_{ij} = s \int \frac{\alpha_j \alpha'_i - \alpha_i \alpha'_j}{s^2} \, dz \quad \text{is a polynomial of degree} \le d. \tag{6}$$

Let

$$E(\alpha_i, \alpha_j)(s_m) := \lim_{z \to s_m} \left(\frac{(z - s_m)^2 (\alpha_j(z) \alpha'_i(z) - \alpha_i(z) \alpha'_j(z))}{(s(z))^2} \right)'.$$

If s has only simple zeroes at the points $\{s_1, s_2, \ldots, s_d\}$, then equation (5) is equivalent to

$$E(\alpha_i, \alpha_j)(s_m) = 0, \quad 1 \le i, j \le 3, \quad m = 1, 2, \dots, d-1,$$
(7)

and (6) is implicitly satisfied. Note that equation (7) implies that $(\alpha_j \alpha'_i - \alpha_i \alpha'_j)/s^2$ has no residues at s_m , $1 \le m \le d-1$, so this function cannot have residues at all.

THE DIMENSION OF THE SPACE OF HARMONIC 2-SPHERES IN THE 6-SPHERE 3 Let

$$F(\alpha_i)(s_m) := \lim_{z \to s_m} \left[\left(\frac{(z - s_m)^2}{(s(z))^2} \right)' \alpha_i'(z) + \frac{(z - s_m)^2}{(s(z))^2} \alpha_i''(z) \right],$$

and note that, if $F(\alpha_i)(s_m) = 0$ and $\alpha_i(s_m) = 0$ for some *i* and some *m*, then $E(\alpha_i, \alpha_j)(s_m) = 0$ for all *j*.

LEMMA 1. Let $d \ge 7$. If s(z) is any polynomial of degree d with simple zeroes at the points s_1, s_2, \ldots, s_d , then there exist polynomials $\alpha_1(z), \alpha_2(z), \alpha_3(z)$ of degree less than or equal to d, and not simultaneously vanishing at any of the points s_m , that satisfy conditions (7) and (2).

Proof. Let
$$s(z) = \prod_{i=1}^{d} (z - s_i)$$
. Let $\alpha_1(z)$ be a solution of the system
 $\alpha_1(s_m) = 0, \quad m = 1, 2, 3$
 $F(\alpha_1)(s_m) = 0, \quad m = 1, 2, 3$

which is not a multiple of s(z) (note that s(z) is also a solution of this system) and such that $\alpha_1(s_j) \neq 0$ for $4 \leq j \leq d$.

Now find independent polynomials $\alpha_2(z), \alpha_3(z)$ of degree d satisfying

$$E(\alpha_1, \alpha_2)(s_m) = 0, \quad 4 \le m \le d - 1$$
 (8)

$$E(\alpha_1, \alpha_3)(s_m) = 0, \ 4 \le m \le d - 1$$
(9)

$$E(\alpha_2, \alpha_3)(s_m) = 0, \quad m = 2, 3, \tag{10}$$

which are independent from s(z) and $\alpha_1(z)$ and do not vanish simultaneously at any of the points s_m , m = 1, 2, 3. Note that equation (10) is an intersection of two quadrics in the 5-dimensional space of solutions of equations (8) or (9); this guarantees the existence of these polynomials.

Using the relation

$$\alpha_1(s_m) E(\alpha_2, \alpha_3)(s_m) + \alpha_2(s_m) E(\alpha_3, \alpha_1)(s_m) + \alpha_3(s_m) E(\alpha_1, \alpha_2)(s_m) = 0, \quad (11)$$

for $1 \le m \le d$, it becomes clear that this construction gives a solution of (7).

By construction, the polynomials α_1 , α_2 and α_3 do not all vanish simultaneously at any of the points s_m ; thus the polynomials $s, \alpha_1, \alpha_2, \alpha_3$ have no common factors. Also by construction, the set $\{s, \alpha_1, \alpha_2, \alpha_3\}$ is a linearly independent set in $\mathbb{C}[z]_d$, so condition (2) is satisfied.

Now that we know that the set of solutions of (1) and (2) with s having simple zeroes is nonempty for $d \ge 7$, we only have do a simple count to find a lower bound for the dimension of this set.

PROPOSITION 1. For $d \ge 6$, the dimension of the moduli space of linearly full harmonic maps from S^2 to S^6 of degree d is at least 2d + 9.

Proof. For d = 6, [1] gives dim $(\operatorname{Harm}_{6}^{f}(S^{2}, S^{6})) = 2 \cdot 6 + 9$. For $d \geq 7$, define the open subset of \mathbb{C}^{4d+4} given by

 $\mathcal{S} = \{ (s, \alpha_1, \alpha_2, \alpha_3) \in (\mathbb{C}[z]_d)^4 : s \text{ has } d \text{ distinct roots} \}.$

LUIS FERNÁNDEZ

Let

$$\mathcal{R} = \{ (s, \alpha_1, \alpha_2, \alpha_3) \in \mathcal{S} : W\left(\left(\frac{\alpha}{s}\right)'\right) \neq 0 \text{ and } E(\alpha_i, \alpha_j)(s_m) = 0, \\ 1 \le i < j \le 3, \ 1 \le m \le d-1, \text{ where } \{s_1, s_2, \dots, s_d\} \text{ are the roots of } s \}$$

Using relation (11) and the fact that the sum of the residues of a meromorphic function is 0, we have d + 3 relations between the equations of the system (7), so this system has no more than 2d-3 independent homogeneous equations and 4d+4 variables. The set \mathcal{R} is the intersection of the variety given by equations (7) with the open set given by condition (2). By Lemma 1, \mathcal{R} is not empty. Therefore its dimension is at least 2d + 7.

Finally, define

J

$$\begin{aligned} \mathbf{A} &= \{ (s, \alpha_1, \alpha_2, \alpha_3, \tau_{12}, \tau_{23}, \tau_{31}) \in (\mathbb{C}[z]_d)^7 : (s, \alpha_1, \alpha_2, \alpha_3) \in \mathcal{R} \\ \text{and} \ \tau_{ij} &= a_{ij}s + s \int \frac{\alpha_j \alpha'_i - \alpha_i \alpha'_j}{s^2} \ dz, \ 1 \le i < j \le 3 \}, \end{aligned}$$

where a_{ij} are arbitrary complex numbers (integration constants).

The elements of \mathcal{A} are solutions of (1) satisfying (2). Its dimension is the dimension of \mathcal{R} plus the three extra degrees of freedom given by the integration constants. Thus, $\dim(\mathcal{A}) \geq 2d + 10$, and therefore we have $\mathbb{P}\mathcal{A} \subset \mathrm{PD}_d^f(S^2, \mathbb{CP}^6)$ and $\dim(\mathbb{P}\mathcal{A}) \geq 2d + 9$.

Since dim(Harm^f₆(S², S⁶)) = dim(HH^f_d(S², Z₃)) = dim(PD^f_d(S², \mathbb{CP}⁶)) \ge 2d + 9, the result follows.

REMARK 1. In the proof of Proposition 1 we have used that birrational transformations preserve the dimension. However, we do not really need to use this fact since the set \mathcal{A} is contained in the regular part of the birrational transformation given in [6].

Of course we understand dimension as the top dimension of the irreducible components, as we do not know whether any of the varieties involved has pure dimension.

3. An Upper Bound on the Dimension of the Moduli Space

Using the notation $\alpha = (\alpha_1, \alpha_2, \alpha_3)$ and $t = (\tau_{23}, \tau_{31}, \tau_{12})$, equation (1) can be written as

$$\alpha \times \alpha' = st' - s't,\tag{12}$$

where \times denotes the cross product in \mathbb{C}^3 .

LEMMA 2. If $[s : \alpha_1 : \alpha_2 : \alpha_3 : \tau_{12} : \tau_{23} : \tau_{13}]$ is a solution of degree d of (12) satisfying (2), where all the components are polynomials, then

$$W(s,t) := \begin{vmatrix} s & \tau_{23} & \tau_{31} & \tau_{12} \\ s' & \tau'_{23} & \tau'_{31} & \tau'_{12} \\ s'' & \tau''_{23} & \tau''_{31} & \tau''_{12} \\ s''' & \tau'''_{23} & \tau''_{31} & \tau''_{12} \end{vmatrix} = \frac{(\det(\alpha, \alpha', \alpha''))^2}{s^2}$$

The dimension of the space of harmonic 2-spheres in the 6-sphere 5

(so it is a perfect square) and

$$\alpha = \frac{st' \times t'' - s't \times t'' + s''t \times t'}{\sqrt{W(s,t)}}$$

Proof. We have

$$\alpha \times \alpha' = st' - s't.$$

Differentiating this equation we obtain

$$\alpha \times \alpha'' = st'' - s''t,$$

and differentiating again,

$$\alpha \times \alpha''' + \alpha' \times \alpha'' = st''' - s'''t + s't'' - s''t'$$

Taking the cross product of the first two equations and using the formula $(u \times v) \times (u \times w) = \det(u, v, w)u$ we get

$$\det(\alpha, \alpha', \alpha'')\alpha = s(st' \times t'' - s't \times t'' + s''t \times t'),$$

and taking the cross product with the third equation we get

$$(\det(\alpha, \alpha', \alpha''))^2 = s^2 W(s, t).$$

Condition $W((\alpha/s)') \neq 0$ implies that $\det(\alpha, \alpha', \alpha'') \neq 0$, and we obtain the desired formula.

The previous formula asserts that the elements of $\text{PD}_d^f(S^2, \mathbb{CP}^6)$ are completely characterised by the polynomials s, τ_{12}, τ_{13} and τ_{23} . Consider the map

$$\Xi: \mathrm{PD}^f_d(S^2, \mathbb{CP}^6) \to \mathrm{Gr}(4, \mathbb{C}[z]_d)$$

given by

$$\Xi([s:\alpha_1:\alpha_2:\alpha_3:\tau_{12}:\tau_{13}:\tau_{23}]) = \langle s,\tau_{23},\tau_{31},\tau_{12} \rangle$$

where Gr stands for the Grassmannian and $\langle v_1, v_2, \ldots, v_k \rangle$ denotes, in general, the subspace spanned by the vectors v_1, v_2, \ldots, v_k .

Let

$$\Pi: \operatorname{Gr}(4, \mathbb{C}[z]_d) \to \mathbb{P}(\mathbb{C}[z]_{4d-12})$$

be the map given by

$$\Pi(\langle g_1, g_2, g_3, g_4 \rangle) = [W((g_1, g_2, g_3, g_4))],$$

where $W((g_1, g_2, g_3, g_4))$ is the Wronskian of the polynomials g_1, g_2, g_3, g_4 , as defined in (3). Lemma 2 asserts that the image of $\Pi \circ \Xi$ lies in the submanifold Q of $\mathbb{P}(\mathbb{C}[z]_{4d-12})$ defined as the projectivisation of the set of non-zero polynomials in $\mathbb{C}[z]_{4d-12}$ that are perfect squares. In other words, the image of Ξ lies in the subvariety $\Pi^{-1}(Q)$ of $\operatorname{Gr}(4, \mathbb{C}[z]_d)$.

Let

$$L: \Lambda^4 \mathbb{C}[z]_d \to \mathbb{C}[z]_{4d-12}$$

be the linear map defined in basic elements $g_1 \wedge g_2 \wedge g_3 \wedge g_4$ by

$$L(g_1 \wedge g_2 \wedge g_3 \wedge g_4) = W((g_1, g_2, g_3, g_4)).$$

LUIS FERNÁNDEZ

Taking the usual basis $\{z^k\}_{k=0}^d$ of $\mathbb{C}[z]_d$ it is a straightforward computation to show that, for $0 \leq i < j < k < \ell \leq d$,

$$L(z^{i} \wedge z^{j} \wedge z^{k} \wedge z^{\ell}) = (\ell - k)(\ell - j)(\ell - i)(k - j)(k - i)(j - i)z^{i + k + j + \ell - 6}.$$

This shows, in particular, that L is onto.

Let $K \subset \Lambda^4 \mathbb{C}[z]_d$ be the kernel of L, and let

$$\widehat{\Pi}: \mathbb{P}(\Lambda^4 \mathbb{C}[z]_d - K) \to \mathbb{P}(\mathbb{C}[z]_{4d-12})$$

be the projectivisation of L.

Let Pl : $\operatorname{Gr}(4, \mathbb{C}[z]_d) \to \mathbb{P}(\Lambda^4 \mathbb{C}[z]_d)$ denote the Plücker embedding. Note that $\operatorname{Pl}(\operatorname{Gr}(4, \mathbb{C}[z]_d))$ is disjoint from $\mathbb{P}K$ (the projectivisation of K), and we have $\Pi = \widehat{\Pi} \circ \operatorname{Pl}$, giving the following diagram:

The following result appears in [5], pp. 127–128, and in the references cited therein, for the case $\operatorname{Gr}(2, \mathbb{C}[z]_d)$. We include a proof for $\operatorname{Gr}(4, \mathbb{C}[z]_d)$; essentially the same argument would work for the corresponding (Wronski) map in $\operatorname{Gr}(n, \mathbb{C}[z]_d)$.

LEMMA 3. For all $q \in \mathbb{P}(\mathbb{C}[z]_{4d-12})$, the set $\Pi^{-1}(q)$ is finite.

Proof. If $q \in \mathbb{P}(\mathbb{C}[z]_{4d-12})$, then $\Pi^{-1}(q)$ is the set of points in $\operatorname{Gr}(4, \mathbb{C}[z]_d)$ whose image under the Plücker embedding lies in $\widehat{\Pi}^{-1}(q)$. Now, $\widehat{\Pi}^{-1}(q)$ is an affine subspace of $\mathbb{P}(\Lambda^4\mathbb{C}[z]_d)$ whose closure is a projective subspace of codimension (4d -12) of the form $[\mathbb{C}p+K]$. Note that $[\mathbb{C}p+K] = \widehat{\Pi}^{-1}(q) \cup \mathbb{P}K$. Since the dimension of $\operatorname{Gr}(4, \mathbb{C}[z]_d)$ is 4d-12, and since $\operatorname{Pl}(\operatorname{Gr}(4, \mathbb{C}[z]_d)) \cap \mathbb{P}K$ is empty, $\operatorname{Pl}(\operatorname{Gr}(4, \mathbb{C}[z]_d)) \cap$ $\widehat{\Pi}^{-1}(q)$ must be nonempty for all $q \in \mathbb{P}(\mathbb{C}[z]_{4d-12})$.

If V were an open subvariety of dimension greater than 0 contained in the intersection of $\operatorname{Pl}(\operatorname{Gr}(4, \mathbb{C}[z]_d))$ and $\widehat{\Pi}^{-1}(q)$, then the closure of V would contain points lying in both $\operatorname{Pl}(\operatorname{Gr}(4, \mathbb{C}[z]_d))$ and $\mathbb{P}K$. This is impossible since $\operatorname{Pl}(\operatorname{Gr}(4, \mathbb{C}[z]_d)) \cap \mathbb{P}K = \emptyset$. Therefore the set

$$\Pi^{-1}(q) = \operatorname{Pl}^{-1}(\operatorname{Pl}(\operatorname{Gr}(4, \mathbb{C}[z]_d)) \cap \widehat{\Pi}^{-1}(q))$$

is a subvariety of dimension 0, so it must consist of a finite number of points. \Box

This implies, in particular, that the dimension of the subvariety $\Pi^{-1}(Q)$ is the same as the dimension of Q, which is 2d - 6, and we have the following result.

PROPOSITION 2. The dimension of $Harm_d(S^2, S^6)$ is less than or equal to 2d+9.

Proof. Since the fiber of the map Ξ : $\mathrm{PD}_d^f(S^2, \mathbb{CP}^6) \to \mathrm{Gr}(4, \mathbb{C}[z]_d)$ has dimension less than or equal to 15, and since Ξ ($\mathrm{PD}_d^f(S^2, \mathbb{CP}^6)$) lies in a variety of dimension 2d - 6, it follows that $\dim(\mathrm{PD}_d^f(S^2, \mathbb{CP}^6)) \leq 2d + 9$. Therefore,

$$\dim(\operatorname{Harm}_d^f(S^2, S^6)) = \dim(\operatorname{HH}_d^f(S^2, \mathbb{Z}_3)) = \dim(\operatorname{PD}_d^f(S^2, \mathbb{CP}^6)) \le 2d + 9$$

6

THE DIMENSION OF THE SPACE OF HARMONIC 2-SPHERES IN THE 6-SPHERE 7

THEOREM 1. The (top) dimension of the moduli space of harmonic maps of area $4\pi d$ from S^2 to S^6 is 2d+9.

Proof. Immediate from Proposition 1 and Proposition 2.

Acknowledgements. I am indebted to Prof. Q. S. Chi for his support and his suggestions, and Prof. J. Bolton for his useful comments. I would also like to express my gratitude to Prof. R. Bryant for a very enlightening meeting that provided me with some of the main keys of the proof. Finally, I would like to thank the referee for many useful comments and Prof. A. Rodríguez for his invaluable help with some of the corrections.

References

- 1. J. L. M. BARBOSA, 'On minimal immersions of S² into S^{2m}', Trans. Amer. Math. Soc. 210 (1975) 75-106.
- 2. J. BOLTON, L. M. WOODWARD, 'Moduli spaces of harmonic 2-spheres', Geometry and Topology of Submanifolds, IV (F. Dillen and L. Verstraelen, eds.), World Scientific, Singapore (1992) 143-151.
- 3. E. CALABI, 'Minimal immersions of surfaces in Euclidean spheres', J. Differential Geom. 1 (1967) 111-125.
- 4. Q. S. CHI, L. FERNÁNDEZ, S. WU, 'Normalized potentials of minimal surfaces in spheres', Nagoya Math. J. 156 (1999) 187-214.
- 5. A. EREMENKO, A. GABRIELOV, 'Rational functions with real critical points and the B. and M. Shapiro conjecture in real enumerative geometry', Ann. of Math. (2), 155 (2002), 105-129. 6. L. FERNÁNDEZ, 'On the moduli space of superminimal surfaces in spheres', Int. J. Math.
- Math. Sci. Vol. 2003, N. 44 (2003) 2803-2827. 7. M. FURUTA, M. A. GUEST, M. KOTANI, Y. OHNITA, 'On the fundamental group of the space
- of harmonic 2-spheres in the *n*-sphere', Math. Z. 215 (1994) N. 4, 303–318.
- 8. M. GUEST, Y. OHNITA, 'Group actions and deformations for harmonic maps', J. Math. Soc. Japan 45 (1993) N. 4, 671–704.
- 9. M. KOTANI, 'Connectedness of the moduli space of minimal 2-spheres in S^{2m} ', Proc. Amer. Math. Soc. 120 (1994) N. 3, 803–810. **10.** B. Loo, 'The space of harmonic maps of S^2 into S^4 ', Trans. Amer. Math. Soc. 313 (1989)
- 81 102.
- 11. J. L. VERDIER, 'Two dimensional σ -models and harmonic maps from S^2 to S^{2n} ', Group Theoretical Methods in Physics, (Proc. 11th int. Colloq. Istanbul 1982), Lecture Notes in Physics 180, Springer Verlag, Berlin (1983) 136-141.
- **12.** J. L. VERDIER, 'Applications harmoniques de S^2 dans S^4 ', Geometry Today (Roma 1984) (E. Arbarello, C. Procesi, E. Strickland, eds.), Progr. Math. 60, Birkhäuser, Boston (1985) 267–282.
- 13. J. L. VERDIER, 'Applications harmoniques de S^2 dans S^4 , II', Harmonic Mappings, Twistors, and σ -models (Luminy, 1986) (P. Gauduchon, ed.), Adv. Ser. in Math. Phys. 4, World Scientific, Singapore (1988) 124–147.

Luis Fernández Departamento de Matemáticas Universidad de los Andes Cra. 1 # 18A-70 Bogotá, Colombia

lfernand@uniandes.edu.co