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THE SPACE OF ALMOST COMPLEX 2-SPHERES

IN THE 6-SPHERE

LUIS FERNÁNDEZ

Abstract. The complex dimension of the space of linearly full almost complex
2-spheres of area 4πd in the round 6-sphere is calculated to be d+ 8. Explicit
examples of these objects are constructed for every integer value of the degree,
d ≥ 6, d 6= 7. Furthermore, it is shown that when d = 6 this space is isomorphic
to the group G2(C), and when d = 7 this space is empty. We also show that
the dimension of the space of non-linearly full almost complex 2-spheres of
area 4πd in the round 6-sphere is 2d+ 5

1. Introduction

Octonionic multiplication in R8 induces a cross product in the vector space,
isomorphic to R7, of imaginary octonions, by defining

x× y = Im(xy)

where octonionic multiplication between x and y is understood and Im( ) denotes
the octonionic imaginary part. In turn, this defines an almost complex structure in
S6 ⊂ Im(O): if p ∈ S6 and Xp ∈ TpS

6, define

Jp(Xp) = p×Xp.

Then J is an orthogonal almost complex structure in S6. Furthermore, it is a nearly
Kähler structure in S6 in the sense that (∇XJ)X = 0 for any X ∈ TS6, where ∇
denotes the Levi-Civita connection in S6 [15].

A smooth map f from any almost complex manifold (M,JM ) to S6 is almost
complex if it is a morphism from (M,JM ) to (S6, J), i.e.

df ◦ JM = J ◦ df.
The particular case of almost complex maps from S2 ∼= CP

1 to S6 has been studied
by several authors (see for example [8, 7, 10, 15, 22, 23]). In particular, explicit
examples of these maps were found in [23], and a Weierstrass-like representation
was given in [8].

On the other hand, a map f : S2 → S6 is harmonic if ∆S2

f = λf for some
function λ : S2 → R (see [9] for example). A simple computation shows that
almost complex maps from S2 to S6 are, in particular, harmonic (see Section 2).
This has several implications. The area of a harmonic map f : S2 → S6 is graded
by the degree: Area(f(S2)) = 4πd, where d is a positive integer [1], and the space
of linearly full (i.e. whose image does not lie in a proper subsphere of S6) harmonic
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2 LUIS FERNÁNDEZ

maps of degree d from S2 to S6 can be given the structure of a complex projective
variety [10, 16] of dimension 2d+ 9 [13, 14]. Therefore, the set of almost complex
maps from S2 to S6 of a given degree can be furnished with the structure of a
projective subvariety of the space of harmonic maps from S2 to S6, and the following
questions arise naturally: What is its dimension? Are there examples of linearly
full almost complex maps from S2 to S6 for every value of the degree?

In this paper we use standard techniques in the study of harmonic maps to show
that the set of linearly full almost complex maps from S2 to S6 is nonempty with
dimension d + 8 for d ≥ 6, d 6= 7, and is empty otherwise. Furthermore, when
d = 6, this space is isomorphic to G2(C). In addition, explicit examples of linearly
full almost complex maps are found for every value of d ≥ 6, d 6= 7. We also find
that the dimension of the space of non-linearly full maps is 2d+ 5.

The paper is organized as follows: in Section 2 we give a quick introduction of
the tools that will be used in subsequent sections. In Section 3 we find criteria to
determine when a harmonic map from S2 to S6 is almost complex, and we show
that two almost complex maps are SO(7,C)-congruent (in the appropriate sense,
see for example [1]) if and only if they are G2(C)-congruent. This fact will be used
in Section 4 to prove the statements regarding dimension explained above. Finally,
in Section 5 we construct explicit examples of linearly full almost complex maps
from S2 to S6.

Acknowledgment: The author would like to thank Dr. John Bolton for the key
to the proof of Theorem 4.2, as well as for many inspiring conversations.

2. Preliminaries

2.1. The octonions. Let {1, i, j,k, ǫ, iǫ, jǫ,kǫ} be an orthonormal basis of R8.
The (real) octonions, denoted by O, are the (nonassociative, noncommutative)
algebra over R with multiplication table, given in terms of this basis, by

1 i j k ǫ iǫ jǫ kǫ

1 −1 i j k ǫ iǫ jǫ kǫ

i i −1 k −j iǫ −ǫ −kǫ jǫ

j j −k −1 i jǫ kǫ −ǫ −iǫ

k k j −i −1 kǫ −jǫ iǫ −kǫ

ǫ ǫ −iǫ −jǫ −kǫ −1 i j k

iǫ iǫ ǫ −kǫ jǫ −i −1 −k j

jǫ jǫ kǫ ǫ −iǫ −j k −1 −i

kǫ kǫ −jǫ iǫ ǫ −k −j i −1

Similarly one defines the complex octonions as O⊗C with the multiplication table
above. The real part of a real or complex octonion is the term involving 1; the
imaginary part is the sum of the remaining terms.

Let Im(O) and Im(O) ⊗ C denote the real and complex span, respectively, of
{i, j,k, ǫ, iǫ, jǫ,kǫ}. Then the formula

x× y = Im(xy)

defines a cross product in Im(O) ∼= R7 or Im(O) ⊗ C ∼= C7 with the following
properties: for u,v,w in O or O⊗ C,

(2.1) u× v =
1

2
(uv − vu) and (u,v) = −1

2
(uv + vu),
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where ( , ) denotes the standard inner product of R7 or its bilinear extension to
C7, i.e.

(

(u1, . . . , u7), (v1, . . . , v7)
)

=

7
∑

i=1

ujvj

for ui, vi in R or C, 1 ≤ i ≤ 7. We will use 〈 , 〉 to denote the hermitian inner
product in C7, i.e.

〈(u1, . . . , u7), (v1, . . . , v7)〉 =
7
∑

i=1

uj v̄j

for ui, vi ∈ C, 1 ≤ i ≤ 7. Other important properties of the cross product are

u× (v ×w) + (u× v)×w = 2(u,w)v − (u,v)w − (w,v)u,(2.2)

u× (u× v) = (u,v)u− (u,u)v,(2.3)

(u,v ×w) = (v,w × u) = (w,u× v).(2.4)

The group of automorphisms of the octonions and complex octonions are G2

and G2(C), respectively, i.e. (gu)(gv)) = g(uv) for all g in G2 and G2(C) and all
u,v in O and O⊗ C, respectively. For a very clear and beautiful exposition of the
octonions and their properties, see for example [19, 20].

2.2. Almost complex maps from the 2-sphere to the 6-sphere. A map

f : S2 → S6 is almost complex if J ◦ df = df ◦ JS2

, where J denotes the almost
complex structure in S6 defined by

Jp(Xp) = p×Xp

for p ∈ S6 ⊂ Im(O) and Xp ∈ TpS
6 ⊂ TpIm(O).

The standard complex structure of S2 ∼= CP
1 can be defined, similarly, using the

cross product in R
3:

JS
2

q (Yq) = q × Yq,

where q ∈ S2 and Yq ∈ TqS
2, and the cross product is given by

x× y = Im(xy)

where in this case quaternionic multiplication and imaginary parts are used. In
fact, this gives the simplest examples of almost complex maps from S2 to S6: if

f̂ : S2 → S2 ⊂ R3 ∼= Im(H) is any holomorphic map, and if h : H → O is any linear
homomorphism of algebras, then h(Im(H)) ⊂ Im(O) and h(x×y) = h(x)×h(y) for
x, y ∈ Im(H), which implies that f := h ◦ f̂ will be an almost complex map since

J ◦ df = J ◦ dh ◦ df̂
= dh ◦ JS2 ◦ df̂ because h is a linear homomorphism

= dh ◦ df̂ ◦ JS2

because f̂ is holomorphic

= df ◦ JS2

.

We will often identify (S2, JS
2

) with CP
1 (or with C ∪ {∞}) via a bi-holomorphic

map, for example an appropriate stereographic projection.
In general, let z = x+ iy be a local holomorphic coordinate in S2. Then

JS
2

(

∂

∂x

)

=
∂

∂y
and JS

2

(

∂

∂y

)

= − ∂

∂x
.
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Therefore f : S2 → S6 ⊂ R7 ∼= Im(O) is almost complex if and only if

Jf(z)

(

df

(

∂

∂x

))

= df

(

∂

∂y

)

and Jf(z)

(

df

(

∂

∂y

))

= −df
(

∂

∂x

)

Using subscripts to indicate differentiation, this equation can be written as

f × fx = fy and f × fy = −fx.

Differentiating again, and using 2.1,

f × fxx = fxy and f × fyy = −fyx,

and adding these two equations we obtain

f × (fxx + fyy) = 0.

Thus (fxx(z)+fyy(z)) is orthogonal to f(z) for all z ∈ S2, and hence f is harmonic.
Using Harm(S2, S6) and Ac(S2, S6) to denote the set of harmonic maps and

almost complex maps, respectively, from S2 to S6, we therefore have

Ac(S2, S6) ⊂ Harm(S2, S6).

Recall [1] that the area of the image of a harmonic map from S2 to S2n is
4πd, where d is a positive integer called the degree of the harmonic map. We
will use Harmd(S

2, S6) and Acd(S
2, S6) to denote the subsets of Harm(S2, S6) and

Ac(S2, S6), respectively, of maps of degree d. Also, we will use Harmf
d(S

2, S6)

and Acfd(S
2, S6) to denote the subsets of linearly full maps, i.e. whose image is

not contained in any proper geodesic subsphere of S6, and Harm
(k)
d (S2, S6) and

Ac
(k)
d (S2, S6) to denote the subsets of those maps whose image is contained in a

k-dimensional subsphere but not in a (k − 1)-dimensional subsphere of S6. It is
known [9] that k has to be an even number. In addition, it is proved in [7, Lemma

4.3] that Ac
(4)
d (S2, S6) is empty. Therefore

Acd(S
2, S6) = Ac

(2)
d (S2, S6) ⊔Acfd(S

2, S6) (disjoint union).

The set Harmd(S
2, S6) can be furnished with the structure of an algebraic variety

[16]; the dimension of Harmf
d(S

2, S6) is 2d + 9, and dimC(Harm
(2k)
d (S2, S6)) =

2d + 9 − (3 − k)(2 − k) for k = 1, 2 [13, 14]. Since The set Acd(S
2, S6) is an

algebraic subvariety of Harmd(S
2, S6) [10], to find the dimension of Acd(S

2, S6) we
can use some of the common machinery in the study of harmonic maps into spheres
and projective spaces—namely harmonic sequences (see for example [24, 6, 7]),
singularity type (see [17, 4, 1, 6]) and twistor lifts (see [9, 1]). We now give a quick
introduction to these techniques.

2.3. Harmonic sequences. We describe the harmonic sequence of a harmonic
map for the specific case of linearly full maps from S2 to S6. Details and proofs
can be found, for example, in [6, 3, 11], and a more general description appears in
[24].

The idea is simple: given a linearly full harmonic map f : S2 → S6 ⊂ C7, differ-
entiate it and project the result over the space orthogonal to f to obtain the next
element of the sequence. This procedure is independent of the chosen coordinate



ALMOST COMPLEX 2-SPHERES IN THE 6-SPHERE 5

modulo scalar multiplication, so it produces a sequence of smooth functions from
S2 to CP

6. More precisely, let fp : S
2 → C7 be given inductively by the conditions

f0 = f(2.5)

fp+1 =
∂fp
∂z

− 1

|fp|2
〈

∂fp
∂z

, fp

〉

fp, −3 ≤ p ≤ 2(2.6)

fp−1 = −|fp−1|2
|fp|2

∂fp
∂z̄

, −2 ≤ p ≤ 3,(2.7)

where 〈 , 〉 and | | denote the hermitian product and associated norm, respectively,
in C7. Since f is assumed to be linearly full, the maps fp, −3 ≤ p ≤ 3, are not
identically zero, and their definition, away from the points where any of the fp is
zero, is independent of the holomorphic coordinate z chosen, modulo multiplication
by scalars. Thus, the maps φp := [fp], −3 ≤ p ≤ 3, are well defined in an open
subset of S2; furthermore, their definition can be extended over the points where
any of the fp is zero, giving maps φp : S

2 → CP
6. It is not hard to check that they

are harmonic [11].
The sequence of maps φp, −3 ≤ p ≤ 3, is called the harmonic sequence of

f . Additionally, φ−3 is holomorphic and φ3 is antiholomorphic. Although the
sequence of functions fp defined above consists only of local representatives of the
harmonic sequence φp, by a slight abuse of language we will also refer to it as ‘the
harmonic sequence of f ’. Note that, although the functions φp do not depend on
the coordinate z used in the definition of the fp, the functions fp certainly do.

The maps fp satisfy the following properties (see, for example, [3]):

f̄p = (−1)p|fp|2f−p(2.8)

|fp||f−p| = 1(2.9)

(fp, fq) = (−1)p δ−p,q,(2.10)

where δij is the Kronecker delta. Together with (2.7), this implies that f−3 is
holomorphic.

The map φ−3, which is usually called the directrix curve of f , is characterized
by being totally isotropic, i.e. for every local representation f−3 of φ−3,

(

∂if−3

∂zi
,
∂jf−3

∂zj

)

= 0, 0 ≤ i, j ≤ 2.

Furthermore [1], every holomorphic, linearly full, totally isotropic map Ξ : S2 →
CP

6 uniquely determines a harmonic map f : S2 → S6 (defined using (2.6)) up to
composition with the antipodal map of S6. This implies that much of the study of
the set of harmonic maps (or, in particular, of almost complex maps) from S2 to
S6 can be translated to the study of totally isotropic curves in CP

6. A very useful
tool in the study of these curves is the notion of singularity type, which we describe
in the next subsection.

2.4. Singularity type. We briefly describe the notion of singularity type of holo-
morphic curves in CP

n. For details, see [4, 17]. Let Σ be a Riemann surface and
let

G : Σ → CP
n

be a linearly full holomorphic curve. Locally, write G = [g(z)] = [g0(z), . . . , gn(z)],
where z is a holomorphic coordinate in Σ and where the gi, 0 ≤ i ≤ n, do not
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vanish simultaneously. Then, for 0 ≤ k ≤ n − 1, the kth associated curve of G is

the map σk : Σ → P(Λk+1Cn+1) ∼= CP(
n+1
k+1)−1 locally defined by

g ∧ ∂g

∂z
∧ · · · ∧ ∂kg

∂zk
.

A higher singularity of G is a point p where the derivative of any of the associated
curves of G is zero.

Writing σk(z) = [σk(z)] locally, let rk(p) be the nonnegative integer defined by

rk(p) = Order of vanishing of

(

σk ∧
∂σk
∂z

)

at z = p.

Note that all the ri(p) are zero except at a finite subset of Σ. The singularity type
of the original map G : Σ → CP

n is defined to be the set

{(p; r0(p), . . . , rn−1(p)) | p is a higher singularity of G}.
The total ramification degree of σk is defined by

rk =
∑

p∈Σ

rk(p).

If δk denotes the degree of σk, and writing δ−1 = δn = 0, we have the Plücker
formulas

δk−1 − 2δk + δk+1 = 2g − 2− rk, 0 ≤ k ≤ n− 1,

where g is the genus of the surface Σ.
When G is the directrix curve of a linearly full almost complex 2-sphere in S6,

the Plücker formulas greatly simplify. Let f : S2 → S6 be a linearly full harmonic
map, and let Φk, −3 ≤ k ≤ 3, be its harmonic sequence. Then Φ−3 : S2 → CP

6

is holomorphic and linearly full. Let σk : S2 → CP
( 7
k+1)−1, 0 ≤ k ≤ 5, be the

kth associated curve of Φ−3, let δk be the degree of σk, and let rk be the total
ramification degree of σk. The fact that f0 is real implies [1]

δ5−k = δk, p = 0, 1, 2,

and then the Plücker formulas read

−2δ0 + δ1 = −(2 + r0)

δ0 − 2δ1 + δ2 = −(2 + r1)(2.11)

δ1 − δ2 = −(2 + r2).

This implies, in particular

(2.12) δ2 = 12 + r0 + 2r1 + 3r2.

On the other hand if fj, −3 ≤ j ≤ 3, is the harmonic sequence of f , then
equations (2.6) and (2.7) imply that

(2.13) σk = f−3 ∧ f−2 ∧ · · · ∧ fk−3

is a local representation of σk. Hence the degree of σk can be calculated using the
formula

(2.14) δk =
1

2πi

∫

S2

∂2

∂z̄∂z
log |σk|2 dz̄ ∧ dz.

Using (2.13) and (2.10), we have

|σk|2 = |f−3|2|f−2|2 · · · |fk−3|2,
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and (2.6) and (2.7) imply, for 0 ≤ k ≤ 5, that

∂2

∂z̄∂z
log(|f−3|2|f−2|2 · · · |fk−3|2) =

|fk−2|2
|fk−3|2

,

so if we let
γj = |fj+1|2/|fj|2, −3 ≤ j ≤ 2,

then equation (2.9) implies that γj = γ−j−1, and therefore, for 0 ≤ k ≤ 2,

δk =
1

2πi

∫

S2

γk−3 dz̄ ∧ dz =
1

2πi

∫

S2

γ2−k dz̄ ∧ dz

(see [6] for details). In the particular case when f ∈ Acfd(S
2, S6), Lemma 5.2 of [7]

gives γ0 = 2γ2 (which also follows from the equality |f1|2|f2|2 = 2|f3|2 obtained in

the proof of Proposition 3.1 below). Therefore, if f ∈ Acfd(S
2, S6),

(2.15) 2δ0 = δ2,

which, using (2.11), gives

(2.16) r2 = r0,

and hence

(2.17) δ0 = 6 + 2r0 + r1.

The last three equations have particular importance in what follows. On the one
hand, equation (2.15) states that the degree of a linearly full almost complex map
from S2 to S6 is equal to the degree of its directrix curve, which is peculiar. On

the other hand, as we will see in Section 4, a map f ∈ Acfd(S
2, S6) is essentially

determined by its singularity type, which is restricted by equation (2.17). This fact

will be used to find an upper bound on the dimension of Acfd(S
2, S6). A lower bound

on the dimension of Acfd(S
2, S6) is implicit in [10], where a different approach is

used, as described in the next subsection.

2.5. Twistor lifts. We give a quick description of the twistor construction started
by Calabi in the 60’s. For details, see [9, 1]. Given a linearly full harmonic map
f : S2 → S2n, its twistor lift is the map ψ : S2 → Zn ⊂ Gr(n,C2n+1) defined by

ψ(z) = Span

(

f,
∂f

∂z̄
, . . . ,

∂nf

∂z̄n

)

,

where z is a holomorphic coordinate. The set Zn is the submanifold of the Grass-
mannian of n-planes in C2n+1 consisting of isotropic n-planes, i.e. the set of
P ∈ Gr(n,C2n+1) such that (u,v) = 0 for all u,v ∈ P . It is a Kähler mani-
fold isomorphic to the homogeneous space SO(2n+ 1,R)/U(n) [1].

There is a projection π : Zn → S2n that can be defined as follows: given a
subspace P ∈ Zn, define π(P ) as the unique real unit vector in C

2n+1 such that
{π(P ), P1, P2, P3, P̄1, P̄2, P̄3} is a positively oriented basis of C2n+1, where the set
{P1, P2, P3} is a basis of P . This map is a Riemannian submersion with the metric
in Zn induced by the standard metric of Gr(n,C2n+1).

If f : S2 → S2n is harmonic and linearly full then its twistor lift is holomorphic,
horizontal (i.e. its derivative is perpendicular to the fibers of π) and linearly full (in
the sense explained in [16]); conversely, if ψ : S2 → Zn is a holomorphic, horizontal
and linearly full map, then ±π ◦ ψ are harmonic. The degree of a holomorphic
map ψ from S2 to Zn is defined as the image under ψ∗ of 1 ∈ H2(S

2,Z) ∼= Z
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in H2(Zn,Z) ∼= Z. Note that if ψ is the twistor lift of f ∈ Harmf
d(S

2, S2n) then
deg(ψ) = d [1].

If we let

HHfd(S
2,Zn) = {Holomorphic, horizontal, full maps ψ : S2 → Zn of degree d}

and

Harmf,±
d (S2, S2n) = {±π ◦ ψ : ψ ∈ HHfd(S

2,Zn)},
then the last paragraph can be summarized by

Harmf
d(S

2, S2n) = Harmf,+
d (S2, S2n) ⊔ Harmf,−

d (S2, S2n).

In [10, 12, 14] birational maps bE : CP
n(n+1)

2 → Zn were constructed which
translated the problem of finding holomorphic, horizontal, linearly full maps into

Zn into finding solutions of a differential system in CP
n(n+1)

2 . More precisely, for
the particular case n = 3, let E = {E0, E1, E2, E3, Ē1, Ē2, Ē3} be a basis of C7

satisfying

(E0, Er) = (E0, Ēr) = (Er , Es) = (Ēr , Ēs) = 0, and (Er, Ēs) = δrs, r, s = 1, 2, 3.

Define the birational map bE : CP6 → Z3 that takes

[s : α1 : α2 : α3 : τ12 : τ23 : τ31]

to the 3-plane in C3 spanned by the vectors

αℓ
s
E0 + Eℓ −

3
∑

k=1

(αℓαk
2s2

+
τℓk
2s

)

Ek, 1 ≤ ℓ ≤ 3,

where it is understood that τji = −τij .
Under this birational map the horizontality condition translates as follows [18,

10, 13, 14]. A map ψ : S2 → Z3 is holomorphic, horizontal and linearly full if and
only if the map

ψ̃ := b−1
E ◦ ψ = [s : α1 : α2 : α3 : τ12 : τ23 : τ31]

satisfies

(2.18) α′
iαj − αiα

′
j = sτ ′ij − s′τij , 1 ≤ i, j ≤ 3,

plus the open condition

(2.19) W

(

(α1

s

)′

,
(α2

s

)′

,
(α3

s

)′
)

6≡ 0,

whereW denotes the Wronskian, and the dashes denote differentiation with respect

to a holomorphic coordinate in S2. In addition, the image of ψ ∈ HHfd(S
2,Z3)

misses the subspace generated by {Ē1, Ē2, Ē3} if and only if ψ̃ has degree exactly

d. In other words, if we define PDfd(S
2,CP6) ⊂ P(C[z]d)

7 by

PDfd(S
2,CP6) = {ψ̃ : S2 → CP

6 of degree d satisfying (2.18) and (2.19)},
then [10, Theorem 2]

{

ψ ∈ HHfd(S
2,Z3) : spanC

{

Ē1, Ē2, Ē3

}

6∈ ψ(S2)
}

∼= PDfd(S
2,CP6).

Now let let {i, j,k, ǫ, iǫ, jǫ,kǫ} be an orthonormal basis of R7 ∼= Im(O) satisfying

k = i× j iǫ = i× ǫ jǫ = j× ǫ kǫ = k× ǫ
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(this is the standard basis of Im(O)) and let E = {E0, E1, E2, E3, Ē1, Ē2, Ē3} be
the basis of Im(O)⊗ C defined by

(2.20)

E0 = ǫ E1 =
i+ iiǫ√

2
E2 =

j− ijǫ√
2

E3 =
k− ikǫ√

2

Ē1 =
i− iiǫ√

2
Ē2 =

j+ ijǫ√
2

Ē3 =
k+ ikǫ√

2
.

Then the basis E satisfies the properties above. If we let

HHfd(S
2,Z3)Ac = {ψ ∈ HHfd(S

2,Z3) : π ◦ ψ is almost complex},

then [10, Proposition 6] (note that the constraint there does not have the factor

‘
√
2’ due to a different choice of the basis (2.20) and the τij)

{

ψ ∈ HHfd(S
2,Z3)Ac : spanC

{

Ē1, Ē2, Ē3

}

6∈ ψ(S2)
}

(2.21)

∼= {ψ̃ ∈ PDfd(S
2,CP6) : i

√
2α1 = τ23}.

This last statement immediately gives a lower bound on the dimension of the variety

Acfd(S
2, S6) which will be used in Lemma 4.1 below.

We need one last observation regarding twistor lifts of maps f ∈ Acfd(S
2, S6). If

Ξ : S2 → CP
6 is the directrix curve of f , and if σ2 : S2 → CP

34 denotes the 2nd

associated curve of Ξ, then σ2 = Pl ◦ ψ, where Pl : Z3 ⊂ Gr(3,C7) → CP
34 is the

Plücker embedding, which has degree 2 [21]. Therefore

δ2 = deg(σ2) = 2 deg(ψ).

Using (2.15) this implies that if Ξ is the directrix curve of f ∈ Acfd(S
2, S6), then

(2.22) deg(Ξ) = d.

3. Cross products and congruence

In this section we state and prove some results that will be needed in the next
sections and have an interest of their own. The first proposition gives a convenient
criterion, in terms of cross products, to check whether a harmonic map from S2 to
S6 is (±)-almost complex (we call a map f ‘(−)-almost complex’ if −f is almost
complex). As a byproduct we obtain all the cross products of elements in the
harmonic sequence of a (±)-almost complex map. In the second proposition we
show that if two almost complex maps are SO(7,C)-congruent, then they areG2(C)
congruent. Again, as a byproduct we obtain the cross products of the derivatives
of the directrix curve of an almost complex map.

The proofs are computational in nature. We will make extensive use of the
properties of the cross product given by (2.2), (2.3) and (2.4).

3.1. Cross products. This section is motivated by the following question: What
is a simple property that characterizes twistor lifts of almost complex maps? In

other words, HHfd(S
2,Z3)Ac is the subvariety of HHfd(S

2,Z3) of maps that satisfy
which condition? Such a condition, namely the vanishing of the torsion ‘III’, was
found in [8, Theorem 4.7] (see also [7, Remark 4.1]). We find a slightly more general
criterion here.
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Proposition 3.1. Let f : S2 → S6 be a linearly full harmonic map and let z be a
holomorphic coordinate in S2. Then f is (±)-almost complex (i.e. f × fz = ±fz)
if and only if

spanC

{

∂f

∂z
,
∂2f

∂z2
,
∂3f

∂z3

}

is closed under ×.

Proof. Since f is harmonic,
(

∂jf
∂zj

, ∂
kf

∂zk

)

= 0, 0 ≤ j, k ≤ 2, so spanC

{

∂f
∂z
, ∂

2f
∂z2

, ∂
3f
∂z3

}

is a totally isotropic subspace, and it has dimension 3 because f is linearly full.

Let fk, −3 ≤ k ≤ 3, be the harmonic sequence of f . Then spanC

{

∂f
∂z
, ∂

2f
∂z2

, ∂
3f
∂z3

}

=

spanC {f1, f2, f3}.
If f is (±)-almost complex, then it is of type (I) in the classification of almost

complex curves in [7], so it satisfies (see equations (4.3), (4.4) and (5.1) of [7])

f × f1 = ±if1
f × f2 = ±if2(3.1)

f × f3 = ∓if3
Differentiating (3.1) and using (2.6) it is easy to obtain

f1 × f2 = ±2if3, f1 × f3 = 0, f2 × f3 = 0,

which proves the ‘only if’ part of the lemma.
The converse is not difficult to prove but it is long. The idea is to use the

properties of the cross product and of the harmonic sequence. Suppose that fj×fk ∈
spanC {f1, f2, f3}, 1 ≤ j, k ≤ 3. Note that f1 × f2 6= 0 since otherwise, using (2.7)
and (2.3),

0 = f0 ×
∂(f1 × f2)

∂z̄
= −|f1|2

|f0|2
f0 × (f0 × f2) =

|f1|2
|f0|2

f2,

which is not possible since f1, f2 6= 0. Write f1 × f2 = a1f1 + a2f2 + a3f3. Then
(2.3) implies

0 = f1 × (f1 × f2) = a2f1 × f2 + a3f1 × f3

0 = f2 × (f1 × f2) = −a1f1 × f2 + a3f2 × f3

Since f1 × f2 6= 0, a3 6= 0. Therefore, writing

H := f1 × f2, d13 := −a2
a3
, d23 :=

a1
a3

we have

(3.2) f1 × f3 = d13H and f2 × f3 = d23H.

Now use (2.7) to find

∂d23
∂z̄

H + d23
∂H

∂z̄
=
∂(f2 × f3)

∂z̄
= −|f2|2

|f1|2
f1 × f3 = −|f2|2

|f1|2
d13H,

which implies

(3.3) d23
∂H

∂z̄
= −

(

∂d23
∂z̄

+
|f2|2
|f1|2

d13

)

H
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Similarly,

(3.4)
∂d13
∂z̄

H + d13
∂H

∂z̄
=
∂(f1 × f3)

∂z̄
= −|f1|2

|f0|2
f0 × f3 −

|f3|2
|f2|2

H

and

(3.5)
∂H

∂z̄
=
∂(f1 × f2)

∂z̄
= −|f1|2

|f0|2
f0 × f2.

Therefore

d23f0 × f2 ≡ 0 (mod H) and d23f0 × f3 ≡ 0 (mod H),

so cross-multiplying these equations by f0 and using (2.3) we obtain

d23f2 ≡ 0 (mod f0 ×H) and d23f3 ≡ 0 (mod f0 ×H),

which implies d23 = 0 since f2 and f3 are linearly independent, and then equation
(3.3) implies d13 = 0. Therefore a1 = a2 = 0, and using (3.2), (3.4) and the fact
that |f0| = 1, we have

f1 × f2 = a3f3, f1 × f3 = 0, f2 × f3 = 0, f0 × f3 = − |f3|2
|f1|2|f2|2

a3f3.

Next, use (2.3) to find

−f3 = f0 × (f0 × f3) =

( |f3|2
|f1|2|f2|2

)2

a23f3,

which implies a3 = h |f1|
2|f2|

2

|f3|2
, with h = ±i. Therefore, so far we have

f1 × f2 = h
|f1|2|f2|2
|f3|2

f3, f1 × f3 = 0, f2 × f3 = 0, f0 × f3 = −hf3,

and using (2.8),

f−1 × f−2 = −hf−3, f−1 × f−3 = 0, f−2 × f−3 = 0, f0 × f−3 = hf−3.

Now, (2.2) implies

−2f0 = f−3 × (f0 × f3) + (f−3 × f0)× f3 = −2hf−3 × f3,

and therefore f−3 × f3 = −hf0. Differentiate and use (2.7) to obtain

h
|f0|2
|f−1|2

f−1 = −h∂f0
∂z̄

=
∂(f−3 × f3)

∂z̄
= −|f3|2

|f2|2
f−3 × f2,

then use (2.9) to find f−3×f2 = −h |f1|
2|f2|

2

|f3|2
f−1, and use (2.8) to find f3×f−2 = hf1.

Also,
0 = f−2 × (f3 × f−2) = hf−2 × f1,

and therefore f−2 × f1 = f2 × f−1 = 0.
Next, use (2.2) to obtain

2f−3 = f−2×(f−3×f2)+(f−2×f−3)×f2 = h
|f1|2|f2|2
|f3|2

f−1×f−2 = −h2 |f1|
2|f2|2

|f3|2
f−3.

This implies

(3.6)
|f1|2|f2|2
|f3|2

= 2,

and therefore H := f1 × f2 = 2hf3.
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Finally, equation (3.5) gives f0 × f2 = hf2, and differentiating,

− |f0|2
|f−1|2

f−1 × f2 −
|f2|2
|f1|2

f0 × f1 =
∂(f0 × f2)

∂z̄
= −h |f2|

2

|f1|2
f1,

which implies f0 × f1 = hf1 = ±if1, as desired.
�

The following condition will be very useful when we compute examples in Section
5.

Corollary 3.2. Let Ξ : S2 → CP
6 be a linearly full holomorphic map and let ξ(z)

be a local holomorphic representation of Ξ. Then Ξ is the directrix curve of an
almost complex map f : S2 → S6 if and only if ξ × ξ′ = 0.

Proof. Suppose that Ξ is the directrix curve of an almost complex map f : S2 → S6,
and let {f−3, f−2, f−1, f0, f1, f2, f3} be its harmonic sequence. If ξ is any local
representation of Ξ, then ξ is a multiple of f−3, and ξ

′ is a linear combination of
f−3 and f−2. Therefore ξ × ξ′ is a multiple of f−3 × f−2, which was computed to
be 0 in the proof of Proposition 3.1.

Conversely, suppose that ξ× ξ′ = 0 for a given local holomorphic representation
ξ. Since Ξ is holomorphic, the same will be true for any local holomorphic represen-
tation, so we can assume that ξ× ξ′ = 0 for every local holomorphic representation
ξ. Differentiating we obtain ξ × ξ′′ = 0. Then we can use equation (2.3) to obtain

0 = ξ × (ξ × ξ′) = (ξ, ξ′)ξ − (ξ, ξ)ξ′

0 = ξ′′ × (ξ × ξ′′) = −(ξ, ξ′′)ξ′′ + (ξ′′, ξ′′)ξ

0 = ξ′ × (ξ × ξ′) = −(ξ, ξ′)ξ′ + (ξ′, ξ′)ξ.

Since ξ is linearly full, ξ, ξ′ and ξ′′ are linearly independent except at a few points,
and therefore (ξ(i), ξ(i)) = 0, for i = 0, 1, 2. Differentiating these expressions we
find

(3.7) (ξ(i), ξ(j)) = 0 for 0 ≤ i < j ≤ 3

which implies that Ξ is totally isotropic. Therefore Ξ is the directrix curve of some
harmonic map f : S2 → S6 [1]. Note that, by the definition and properties of the
directrix curve,

spanC {ξ, ξ′, ξ′′} = spanC

{

∂f

∂z̄
,
∂2f

∂z̄2
,
∂3f

∂z̄3

}

= spanC

{

∂f

∂z
,
∂2f

∂z2
,
∂3f

∂z3

}

so in view of Proposition 3.1 it suffices to show that spanC {ξ, ξ′, ξ′′} is closed under
×. Since ξ×ξ′ = ξ×ξ′′ = 0, it only remains to show that ξ′×ξ′′ ∈ spanC {ξ, ξ′, ξ′′}.

To this end, note that equations (2.4), (2.3) and (3.7) imply

(ξ, ξ′ × ξ′′) = (ξ′, ξ′ × ξ′′) = (ξ′′, ξ′ × ξ′′) = 0

and

(ξ′ × ξ′′, ξ′ × ξ′′) = −(ξ′′, ξ′ × (ξ′ × ξ′′)) = 0

which implies that spanC {ξ, ξ′, ξ′′, ξ′ × ξ′′} is a totally isotropic subspace of C7, and
as such it must have dimension at most 3. Since spanC {ξ, ξ′, ξ′′} has dimension 3,
it follows that ξ′ × ξ′′ ∈ spanC {ξ, ξ′, ξ′′}.

�
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Most of the cross products of elements of the harmonic sequence were computed
in Proposition 3.1. For future use, we find the remaining ones in the following
lemma.

Lemma 3.3. Let {f−3, f−2, f−1, f0, f1, f2, f3} be the harmonic sequence of f ∈
Acfd(S

2, S6). Then the table of cross products (fi × fj)ij is given by

× f−3 f−2 f−1 f0 f1 f2 f3

f−3 0 0 0 −if−3 −2if−2 −2if−1 −if0
f−2 0 0 if−3 if−2 0 −if0 −if1
f−1 0 −if−3 0 if−1 if0 0 −if2
f0 if−3 −if−2 −if−1 0 if1 if2 −if3
f1 2if−2 0 −if0 −if1 0 2if3 0
f2 2if−1 if0 0 −if2 −2f3 0 0
f3 if0 if1 if2 if3 0 0 0

Proof. Many of the cross products were found in the proof of Proposition 3.1. We
find the remaining ones here. Use formulas (2.7) and (2.9) to find

−|f2|2
|f1|2

f−3 × f1 =
∂(f−3 × f2)

∂z̄
= −2i

∂f−1

∂z̄
= 2i

|f−1|2
|f−2|2

f−2,

which gives f−3 × f1 = −2if−2. Then use (2.8) to find

|f−3|2|f1|2f3 × f−1 = f−1 × f3 = 2if̄−2 = 2i|f−2|f2.
Using (2.9) and (3.6) we obtain f−1× f3 = −if2, f−2× f0 = if−2, f−1× f0 = if−1.

To find f−1 × f1, differentiate f0 × f1 = if1 and use (2.7) to obtain

− |f0|2
|f−1|2

f−1 × f1 =
∂(f0 × f1)

∂z̄
= i

∂f1
∂z̄

= −i |f1|
2

|f0|2
f0

which, using (2.9), gives f−1 × f1 = if0. Finally, differentiate f−2 × f1 = 0 and use
(2.9) to find f−2 × f2 = −if0.

�

3.2. Congruence. The motivation is the following: if the directrix curves of two
linearly full harmonic maps from S2 to S6 are SO(7,C)-congruent, then they cer-
tainly have the same singularity type. Moreover, the set of directrix curves of
linearly full harmonic maps from S2 to S6 with a given singularity type is a finite
union of SO(7,C) orbits [4]. Is this also true when we substitute ‘harmonic’ with
‘almost complex’ and ‘SO(7,C)’ with ‘G2(C)’?

This fact will be implied by the following: does SO(7,C)-congruence of twistor
lifts of almost complex maps imply G2(C)-congruence? Intuitively it seems that
this should be true. On the one hand its real counterpart is clearly true in view of
Proposition 3.1. On the other hand, if g ∈ SO(7,C) and ψ is the twistor lift of an
almost complex map with directrix curve expressed locally by [ξ], then [gξ] is the
directrix of the almost complex map whose twistor lift is gψ, and it is easy to see
that, if ξ is suitably normalized,

ξ′ × ξ′′ = iξ and (gξ′)× (gξ′′) = i(gξ) = g(ξ′ × ξ′′).

This implies that g preserves all the cross products of the form ξ′(p)×ξ′′(p), p ∈ S2,
which should include all possible cross products within a basis of C7.
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This heuristic idea is not easy to translate rigorously. Instead, we prove this
fact by calculating the cross products of the derivatives, up to order 6, of the
directrix curve. The proof is, surprisingly, an easy but lengthy computation using
the properties of the cross product.

Lemma 3.4. Let fp, −3 ≤ p ≤ 3, be the harmonic sequence of a map f ∈
Acfd(S

2, S6), and let ξ ≡ f−3. Then the table of the bilinear products ((ξ(i), ξ(j)))ij
of the derivatives of ξ has the form

(3.8)

( , ) ξ ξ′ ξ′′ ξ′′′ ξ(4) ξ(5) ξ(6)

ξ 0 0 0 0 0 0 −1
ξ′ 0 0 0 0 0 1 0
ξ′′ 0 0 0 0 −1 0 2b44
ξ′′′ 0 0 0 1 0 −2b44 −3b′44
ξ(4) 0 0 −1 0 2b44 b′44 2b46
ξ(5) 0 1 0 −2b44 b′44 2b55 b′55
ξ(6) −1 0 2b44 −3b′44 2b46 b′55 2b66

where bij = (ξ(i), ξ(j))/2, and the table of cross products (ξ(i) × ξ(j))ij has the form

× ξ ξ′ ξ′′ ξ′′′ ξ(4) ξ(5) ξ(6)

ξ 0 0 0 −iξ −2iξ′ C05 C06

ξ′ 0 0 iξ iξ′ −ib44ξ C15 C16

ξ′′ 0 −iξ 0 C23 C24 C25 C26

ξ′′′ iξ −iξ′ −C23 0 C34 C35 C36

ξ(4) 2iξ′ ib44ξ −C24 −C34 0 C45 C46

ξ(5) −C05 −C15 −C25 −C35 −C45 0 C56

ξ(6) −C06 −C16 −C26 −C36 −C46 −C56 0

where Cij =
∑6
k=0 L

ij
k ξ

(k), and the complex functions Lijk depend only on the prod-
ucts bij and their derivatives. (Although we explain below how to find the Cij , we
omit their explicit formulas as they are not relevant for the remainder of the paper.)

Proof. First notice that if {f−3, f−2, f−1, f0, f1, f2, f3} is the harmonic sequence of
the almost complex map f , then

(3.9) ξ(i) ≡ fi−3 mod (f−3, f−2, . . . , fi−3).

Using (2.10), this implies that (ξ(i), ξ(j)) = 0 if i + j < 6 and (ξ(i), ξ(j)) = (−1)i+1

if i + j = 6. Then notice that 0 = (ξ(3), ξ(3))′ = 2(ξ(3), ξ(4)), and use the formula
(ξ(i), ξ(j))′ = (ξ(i+1), ξ(j)) + (ξ(i), ξ(j+1)) to find the remaining bilinear products.

To find the cross product table, notice that if ξ(i)×ξ(i+1) is known for 0 ≤ i ≤ k,
then ξ(i) × ξ(j) can be easily found, for 0 ≤ i+ j ≤ 2k + 2, using the formula

(ξ(i) × ξ(j))′ = ξ(i+1) × ξ(j) + ξ(i) × ξ(j+1).

Hence it suffices to find ξ(i) × ξ(i+1) for 0 ≤ i ≤ 5.
Lemma 3.3 and equation (3.9) imply that ξ × ξ′ = ξ × ξ′′ = 0, ξ′ × ξ′′ = iξ,

ξ′ × ξ′′′ = iξ′, ξ × ξ′′′ = −iξ, and L23
k = 0 for k ≥ 3. Therefore,

ξ′′ × ξ′′′ = L23
0 ξ + L23

1 ξ
′ + L23

2 ξ
′′.
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Use (2.3), (2.2), and (3.8) to find

0 = ξ′′ × (ξ′′ × ξ′′′) = −L23
1 ξ

′ × ξ′′ = −iL23
1 ξ

0 = ξ′ × (ξ′′ × ξ′′′) + (ξ′ × ξ′′)× ξ′′′ = L23
2 ξ

′ × ξ′′ + iξ × ξ′′′ = iL23
2 ξ + ξ

which gives L23
1 = 0, L23

2 = i. On the other hand,

iξ′′ = (ξ′ × ξ′′′)′ = ξ′′ × ξ′′′ + ξ′ × ξ(4),

and therefore ξ′ × ξ(4) = −L23
0 ξ. Hence, using (2.2) and (3.8) again, we obtain

2b44ξ
′ = ξ(4) × (ξ′ × ξ(4)) = L23

0 ξ × ξ(4) = −2iL23
0 ξ

′

since ξ × ξ(4) = (ξ × ξ′′′)′ − ξ′ × ξ′′′ = −2iξ′; this gives L23
0 = ib44, and therefore

ξ′′ × ξ′′′ = ib44ξ + iξ′′

which, differentiating and using (2.14) gives ξ′′ × ξ(4) = ib′44ξ + ib44ξ
′ + iξ′′′ and

ξ′ × ξ(4) = −ib44ξ. To find ξ′′′ × ξ(4) =
∑4

k=0 L
34
k ξ

(k), proceed similarly to obtain

0 = ξ × (ξ′′′ × ξ(4)) + (ξ × ξ′′′)× ξ(4) = −iL34
3 ξ − 2iL34

4 ξ
′ − 2ξ′,

0 = ξ′ × (ξ′′′ × ξ(4)) + (ξ′ × ξ′′′)× ξ(4) = iL34
2 ξ + iL34

3 ξ
′ − ib44L

34
4 ξ + b44ξ

−ξ(4) = ξ′′′ × (ξ′′′ × ξ(4)) = iL34
0 ξ − iL34

1 ξ
′ − L34

2 (ib44ξ + iξ′′)

+L34
4 (L34

0 ξ + L34
1 ξ

′ + L34
2 ξ

′′ + L34
3 ξ

′′′ + L34
4 ξ

(4))

2b44ξ
′′′ = ξ(4) × (ξ′′′ × ξ(4)) = 2iL34

0 ξ
′ + ib44L

34
1 ξ

′ − L34
2 (ib′44ξ + ib44ξ

′ + iξ′′′)

−L34
3 (L34

0 ξ + L34
1 ξ

′ + L34
2 ξ

′′ + L34
3 ξ

′′′ + L34
4 ξ

(4))

which leads to
ξ′′′ × ξ(4) = ib244ξ + 2ib′44ξ

′ + 2ib44ξ
′′ + iξ(4).

To find ξ(4) × ξ(5) =
∑6

k=0 L
45
k ξ

(k), it is easier to use (2.4) as follows:

−L45
6 = (ξ, ξ(4) × ξ(5)) = (ξ(5), ξ × ξ(4)) = −2i, so L45

6 = 2i.

L45
5 = (ξ′, ξ(4) × ξ(5)) = (ξ(5), ξ′ × ξ(4)) = 0, so L45

5 = 0.

−L45
4 + 4b44i = (ξ′′, ξ(4) × ξ(5)) = (ξ(5), ξ′′ × ξ(4)) = ib44 − 2ib44, so L45

4 = 5ib44.

L45
3 − 6b′44i = (ξ′′′, ξ(4) × ξ(5)) = (ξ(5), ξ′′′ × ξ(4)) = 2ib′44 + ib′44, so L45

3 = 9ib′44.

−L45
2 + 10ib244 + 4ib46 = (ξ(4), ξ(4) × ξ(5)) = 0, so L45

2 = 2i(5b244 + 2b46).

L45
1 − 13ib44b

′
44 + 2ib′554 = (ξ(5), ξ(4) × ξ(5)) = 0, so L45

1 = i(13b44b
′
44 − 2b′55).

Finding L45
0 is trickier: first find ξ′′′ × ξ(6) = (ξ′′′ × ξ(5))′ − ξ(4) × ξ(5) and then

calculate ξ(6) × (ξ′′′ × ξ(6)) as above. The result is

ξ(4) × ξ(5) = i(−3b344 + 2b66 − 7b′244 + 11b44b
′′
44)ξ + i(7b44b

′
44 + 2b′′′44)ξ

′

+2i(2b244 + 3b′′44)ξ
′′ + 9ib′44ξ

′′′ + 5ib44ξ
(4) + 2iξ(6).

Finally, finding ξ(5) × ξ(6) is easy: compute ξ(5) × (ξ(4) × ξ(5)) and solve for
ξ(5) × ξ(6). The long result is

ξ(5) × ξ(6) = −i(11b444 − 6b44b66 + 19b44b
′2
44 − 32b244b

′′
44 − 3b′′244 + 2b′44b

′′′
44)ξ

+i(15b244b
′
44 + 9b′44b

′′
44 + 3b44b

′′′
44)ξ

′ + i(11b344 − 2b66 + 25b′244 + b44b
′′
44)ξ

′′

+i(28b44b
′
44 − b′′′44)ξ

′′′ + i(11b244 + b′′44)ξ
(4) + 5ib′44ξ

(5) + 5ib44ξ
(6).

�
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This result—namely that the cross products of the derivatives of the directrix
curve are completely determined by their bilinear products—has the following im-
mediate consequence.

Proposition 3.5. If ψ, χ ∈ HHfd(S
2,Z3)Ac and χ = gψ, where g ∈ SO(7,C), then

g ∈ G2(C).

Proof. Let {fi}3i=−3 and {gi}3i=−3 be the harmonic sequences of π ◦ ψ and π ◦ χ,
respectively (see Section 2), and let ξ := f−3 and ζ := g−3. Then ζ = gξ. Write

ξ(i)×ξ(j) =∑6
k=0 L

ij
k ξ

(k) and ζ(i)×ζ(j) =∑6
k=0M

ij
k ζ

(k). Then Lemma 3.4 implies

that the Lijk and the M ij
k depend only on the products (ξ(i), ξ(j)) and (ζ(i), ζ(j)).

Since ζ(i) = gξ(i), i ≥ 0, and g is in SO(7,C), (ξ(i), ξ(j)) = (ζ(i), ζ(j)) for all i, j ≥ 0,

and therefore Lijk =M ij
k for 0 ≤ i, j, k ≤ 6. Hence

gξ(i) × gξ(j) = ζ(i) × ζ(j) =

6
∑

k=0

M ij
k ζ

(k) =

6
∑

k=0

Lijk gξ
(k) = g(ξ(i) × ξ(j)).

Since ξ is linearly full, this implies that g preserves all the pairwise cross products
of a basis, and therefore is in G2(C).

�

Corollary 3.6. If nonempty, HHf6 (S
2,Z3)Ac is isomorphic to G2(C).

Proof. Since G2(C) preserves cross products, Proposition 3.1 implies that G2(C)

acts on HHf6 (S
2,Z3)Ac. This action is free since HHf6 (S

2,Z3)Ac consists of linearly

full maps. On the other hand, any two elements of HHf6 (S
2,Z3)Ac are SO(7,C)-

congruent [1], and therefore G2(C)-congruent by Proposition 3.5. Hence G2(C) acts

simply transitively on HHf6 (S
2,Z3)Ac, and therefore these spaces are isomorphic.

�

4. Dimension

From Section 2 we know that

Acd(S
2, S6) = Ac

(2)
d (S2, S6) ⊔Acfd(S

2, S6) (disjoint union).

Using the tools from the previous sections, we will now find the dimension of each
one of the components.

4.1. Linearly full maps. Recall [16] that Harmf
d(S

2, S6) has two disconnected

components, denoted Harmf,+
d (S2, S6) and Harmf,−

d (S2, S6). Since the varieties

Harmf,+
d (S2, S6) and HHfd(S

2,Z3) are isomorphic as sets [1], we transfer the al-

gebraic structure of HHfd(S
2,Z3) to Harmf,+

d (S2, S6) making these two sets alge-

braically isomorphic. Similarly, since Acfd(S
2, S6) ⊂ Harmf,+

d (S2, S6), we assume

throughout that Acfd(S
2, S6) is algebraically isomorphic to HHfd(S

2,Z3)Ac by trans-
ferring the algebraic structure of the latter to the former via the isomorphism above.

Therefore, to find the dimension of Acfd(S
2, S6) we only need to find the dimension

of HHfd(S
2,Z3)Ac. It is very easy to get a lower bound, as follows.

Lemma 4.1. If nonempty, the dimension of Acfd(S
2, S6) is at least d+ 8.
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Proof. Use (2.21): The dimension of the variety PDfd(S
2,CP6) is 2d + 9 [13, 14].

Since α1 and τ23 are polynomials of degree at most d, the condition i
√
2α1 = τ23

imposes d + 1 additional (not necessarily independent) equations Therefore, the

left hand side of (2.21), which is an open subset of HHfd(S
2,Z3)Ac, has dimension

greater than or equal to d+8. Hence, if HHfd(S
2,Z3)Ac is not empty, its dimension

must be at least d+ 8.
�

To find an upper bound we use the following idea, which appears at the end
of [4]. Every harmonic map from S2 to S6 is determined, modulo SO(7,C) and
a finite number of choices, by its singularity type [2]. Thus, up to the action of

SO(7,C) and a finite group, every element of Harmf,+
d (S2, S6) is determined by

r0 + r1 + r2 complex numbers, where r0, r1, r2 satisfy d− 12 = r0 + 2r1 + 3r3 (see
equations (2.12) and (2.22)). The maximum of r0 + r1 + r2 is then achieved when
r1 = r2 = 0, r0 = 2d− 12. Since the dimension of SO(7,C) is 21, the dimension of

Harmf,+
d (S2, S6) should therefore be 2d− 12 + 21 = 2d+ 9, which is correct.

The same idea was suggested by Bolton for the almost complex case: if Ξ is the

directrix curve of f ∈ Acfd(S
2, S6) then, using (2.22), equation (2.17) reads

(4.1) d− 6 = 2r0 + r1,

where r0 and r1 are the total ramification degrees of Ξ and the first associated

curve of Ξ, respectively. Hence, assuming that every element of Acfd(S
2, S6) is

determined, modulo G2(C) and a finite number of choices, by its singularity type,
then we have r0+ r1 complex parameters, where r0, r1 satisfy (4.1). The maximum
of r0+ r1 is then attained when r0 = 0, r1 = d− 6. Since the dimension of G2(C) is

14, the dimension of Acfd(S
2, S6) should be d− 6 + 14 = d+ 8. We will now make

this idea more rigorous.

If ψ ∈ HHfd(S
2,Z3)Ac, let Ξψ : S2 → CP

6 denote the directrix curve of f =

π ◦ ψ. Note that Ξψ is the only curve such that ξ, ξ′, ξ′′ ∈ ψ, where ξ is a local
representation of Ξψ. This implies that the map that takes ψ to Ξψ is algebraic; it
is in fact an isomorphism, but we do not need it here.

Let

Σd0 = {(z01, . . . , z0d0) ∈ (S2)d0 : z0j 6= z0k, 1 ≤ j < k ≤ d0}
Σd1 = {(z11, . . . , z1d1) ∈ (S2)d1 : z1j 6= z1k, 1 ≤ j < k ≤ d1}

and let Σd0,d1 = Σd0 ×Σd1 . Let m0 = (m01, . . . ,m0d0) and m1 = (m11, . . . ,m1d1),
where the mij are positive integers satisfying

(4.2) 2(m01 + · · ·+m0d0) +m11 + · · ·+m1d1 = d− 6.

Consider the subsets of Σd0,d1 ×HHfd(S
2,Z3)Ac given by

Hm0,m1 =

{

(z01, . . . , z0d0, z11, . . . , z1d1 , ψ) ∈ Σd0,d1 ×HHfd(S
2,Z3)Ac :

(

σ
ψ
0
∧ ∂σψ

0

∂z

)

0

=

d0
∑

j=1

m0jz0j,

(

σ
ψ
1
∧ ∂σψ

1

∂z

)

0

=

d1
∑

k=1

m1kz1k

}

,

for any local representations σψ
0

and σ
ψ
1

of the zeroth and first associated curves

σψ0 and σψ1 of Ξψ, respectively, and where the parenthesis ( )0 denotes the divisor of
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zeros, and z is any holomorphic coordinate in S2. Since the maps ψ → Ξψ and Ξψ →
σψj are both algebraic, Hm0,m1 is an algebraic subvariety of Σd0,d1×HHfd(S

2,Z3)Ac.

If π1 and π2 denote the projections over the 1st and 2nd factors of Σd0,d1 ×
HHfd(S

2,Z3)Ac, note that π2(Hm0,m1) is the variety (actually, it is just a con-

structible set) of maps ψ ∈ HHfd(S
2,Z3)Ac such that the zeroth associated curve

of Ξψ has d0 singularities of orders m01, . . . ,m0d0 , and the first associated curve of
Ξψ has d1 singularities of orders m11, . . . ,m0d1 . Therefore

HHfd(S
2,Z3)Ac =

⋃

m0,m1

π2(Hm0,m1)

where m0,m1 satisfy (4.2), so the union is finite. Hence the dimension of the

variety HHfd(S
2,Z3)Ac is the maximum of the dimensions of the π2(Hm0,m1).

Theorem 4.2. When nonempty, the (pure) dimension of Acfd(S
2, S6) is d+ 8.

Proof. In view of Lemma 4.1 and the paragraph before it, we only need to prove

that the dimension of HHfd(S
2,Z3)Ac is at most d+8. First we find the dimension

of Hm0,m1 . The dimension of π1(Hm0,m1) ⊂ Σd0,d1 is at most d0 + d1. Each fiber

of π1 is isomorphic to the set of maps ψ ∈ HHfd(S
2,Z3)Ac such that Ξψ has a given

singularity type. Since the set of maps ψ ∈ HHfd(S
2,Z3) with a given singularity

type is a finite union of SO(7,C) orbits [2], Lemma 3.5 implies that the fiber of
π1 is a finite union of G2(C)-orbits, and therefore has dimension 14. Hence the
dimension of Hm0,m1 is at most d0 + d1 + 14. On the other hand, the fibre of π2
consists of all the permutations of the z0i and z1i, so it is finite, and therefore the
dimension of π2(Hm0,m1) is at most d0 + d1 + 14.

The maximum of d0+d1+14 subject to the condition (4.2) happens when d0 = 0
and all the m1j , 1 ≤ j ≤ d1, are 1. In this case, d1 = d− 6, so d0 + d1 +14 = d+8,
as desired.

�

4.2. Non-linearly full maps. As explained in Section 2, if f̃ ∈ Hold(S
2, S2) and

h : H → O is a homomorphism of algebras, then h ◦ f̃ ∈ Ac
(2)
d (S2, S6), where

Hold(S
2, S2) denotes the variety of holomorphic maps of degree d from S2 ⊂ Im(H)

to itself. It is easy to see that all the elements of Ac
(2)
d (S2, S6) have this form: let

f ∈ Ac
(2)
d (S2, S6), and let Vf be the smallest subspace of R7 containing the image

of f . Then, if z = x + iy is a holomorphic coordinate in S2, using subscripts to
denote derivatives, we have

Vf = spanR {f, fx, fy}.
Since

f × fx = fy, f × fy = −fx, and fx × fy = fx × (f × fx) = (fx, fx) f − (fx, f) fx,

the subspace Vf ⊂ Im(O) is closed under × and therefore there is an isomorphism

of algebras h : H → R · 1 ⊕ Vf ⊂ O. Then f̃ = h−1 ◦ f ∈ Hold(S
2, S2) and

f = h ◦ f̃ . In particular, the set {Vf : f ∈ Ac
(2)
d (S2, S6)} is isomorphic to the

space of subalgebras of O that are isomorphic to H. This is the homogeneous space
G2/SO(4), which has real dimension 8. Although we do not know whether the

space Ac
(2)
d (S2, S6) is a complex variety, we will use complex dimension instead of

real in order to have a more compact statement.
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Theorem 4.3. The dimension of Ac
(2)
d (S2, S6) is 2d+ 5.

Proof. By the observations above, the map

ρ : Ac
(2)
d (S2, S6) → G2/SO(4) ⊂ Gr(3,R7)

defined by

ρ(f) = 3-dimensional subspace where f(S2) lies

gives a fiber bundle with fiber Hold(S
2, S2) (see also [14]). Therefore

dimC (Ac
(2)
d (S2, S6)) = dimC (Hold(S

2, S2))+dimC (G2/SO(4)) = 2d+1+4 = 2d+5

�

It is worth noting the following curious fact: as opposed to the harmonic map case
(see [14]), the space of nonlinearly full almost complex maps has greater dimension
than the space of linearly full almost complex maps.

5. Existence and examples

In this section we construct examples of linealy full almost complex maps from
S2 to S6 of any degree d ≥ 6, with d 6= 7. This is done by giving explicit formulas
for their directrix curves as in [1]. There cannot be linearly full, almost complex
maps of degree 7 because if d = 7, formula (4.1) gives r0 = 0, r1 = 1, so the map
would be one-point ramified, which is impossible by [5].

Let {E0, E1, E2, E3, Ē1, Ē2, Ē3} be the basis described in (2.20). For reference,
we give the cross product table in this basis.

× E0 E1 E2 E3 Ē1 Ē2 Ē3

E0 0 iE1 −iE2 −iE3 −iĒ1 iĒ2 iĒ3

E1 −iE1 0 0 0 iE0

√
2E3 −

√
2E2

E2 iE2 0 0
√
2E1 −

√
2Ē3 −iE0 0

E3 iE3 0 −
√
2E1 0

√
2Ē2 0 −iE0

Ē1 iĒ1 −iE0

√
2Ē3 −

√
2Ē2 0 0 0

Ē2 −iĒ2 −
√
2E3 iE0 0 0 0

√
2Ē1

Ē3 −iĒ3

√
2E2 0 iE0 0 −

√
2Ē1 0

In [1], Barbosa finds examples of totally isotropic curves of the form

ξ = a0E1+aℓ−2z
ℓ−2E2+aℓ−1z

ℓ−1E3+aℓz
ℓE0+aℓ+1z

ℓ+1Ē3+aℓ+2z
ℓ+2Ē2+a2ℓz

2ℓĒ1,

where z is a holomorphic coordinate in S2. Note that all of these examples have
higher singularities only at 0 and ∞, and at these points r0 = ℓ− 3, r1 = r2 = 0, so
they cannot be almost complex because they do not satisfy (2.16). In fact, equation
(4.1) says that the generic almost complex curve has r0 = 0 at every point. This
suggests that we try solutions of the form

ξ = a0E1+a1zE2+aℓ−1z
ℓ−1E3+aℓz

ℓE0+aℓ+1z
ℓ+1Ē3+a2ℓ−1z

2ℓ−1Ē2+a2ℓz
2ℓĒ1.

This in fact works and gives solutions for even d = 2ℓ. By Corollary 3.2, it suffices
to solve the equation ξ × ξ′ = 0, which gives an underdetermined system of 7
equations. One can actually take aℓ+1 = a2ℓ−1 = a2ℓ = 1 and solve for the other
ai to obtain

a0 =
(ℓ− 2)2(ℓ− 1)

ℓ2(2ℓ− 1)(ℓ+ 1)
, a1 = − ℓ − 2

ℓ(2ℓ− 1)
, aℓ−1 =

(ℓ − 2)(ℓ− 1)

ℓ(ℓ+ 1)
, aℓ =

i
√
2(ℓ− 2)

ℓ
.
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Note that these examples have higher singularities only at 0 and ∞, and r0 = 0,
r1 = ℓ− 3 at these points.

Finding examples for odd d = 2ℓ + 1 is trickier. The idea is to keep the singu-
larities at 0 and ∞ and create a single one at another point. This is achieved by
trying solutions of the form

ξ(z) = (b0 + c0z)E1 + (b1 + c1z)z E2 + (bℓ−1 + cℓ−1z)z
ℓ−1E3 + (bℓ + cℓz)z

ℓE0

+(bℓ+1 + cℓ+1z)z
ℓ+1Ē3 + (b2ℓ−1 + c2ℓ−1z)z

2ℓ−1Ē2 + (b2ℓ + c2ℓz)z
2ℓĒ1.

Again, the equation ξ × ξ′ = 0 leads to an underdetermined system of equations in
the bi, ci. One can take b0 = b1 = c1 = 1 and solve for the other variables to obtain

c0 =
(ℓ− 3)(ℓ+ 2)

(ℓ− 1)ℓ
, bℓ−1 =

ℓ(ℓ+ 1)

ℓ− 2
, cℓ−1 =

(ℓ − 3)2(ℓ+ 1)(ℓ+ 2)

(ℓ− 2)(ℓ− 1)ℓ
,

bℓ = −i
√
2(ℓ+ 1), cℓ = − i

√
2(ℓ − 3)(ℓ+ 1)

ℓ
, bℓ+1 = (ℓ− 1),

cℓ+1 =
(ℓ− 1)2

ℓ+ 2
, b2ℓ−1 = − ℓ(ℓ+ 1)2

(ℓ − 2)(2ℓ− 1)
, c2ℓ−1 = − (ℓ− 3)2(ℓ + 1)2

ℓ(ℓ− 2)(2ℓ− 1)
,

b2ℓ =
(ℓ− 1)(ℓ+ 1)

2ℓ− 1
, c2ℓ =

(ℓ− 3)(ℓ− 1)2(ℓ + 1)

ℓ(ℓ+ 2)(2ℓ− 1)
.

Note that in the case d = 7 (so ℓ = 3) the coefficient c6 is 0, and the solution
obtained has degree 6.

For d odd, the examples above have higher singularities at 0 and ∞, with r0 = 0,
r1 = ℓ− 3, and at ℓ/(3− ℓ), with r0 = 0, r1 = 1.

Theorem 5.1. For d ≥ 6, d 6= 7, the maps [ξ] : S2 → S6 defined above are directrix
curves of linearly full almost complex spheres in S6 of degree d.

Proof. It is clear that all the curves are linearly full and have degree d, so it only
remains to check that they are solutions of the equation ξ× ξ′ = 0. The expression
for ξ × ξ′ in the even dimensional case is as follows: If

ξ = a0E1 + a1z
1E2 + aℓ−1z

ℓ−1E3 + aℓz
ℓE0 + zℓ+1Ē3 + z2ℓ−1Ē2 + z2ℓĒ1,

then

ξ × ξ′ = (2iℓa0 − i(2ℓ− 1)a1 + ia1 + i(ℓ− 1)aℓ−1 − i(ℓ+ 1)aℓ−1) z
2ℓ−1E0

+
(√

2(ℓ− 1)a1aℓ−1 −
√
2a1aℓ−1 − iℓa0aℓ

)

zℓ−1E1

+
(

−
√
2a0(ℓ + 1) + iℓa1aℓ − ia1aℓ

)

zℓE2

+
(√

2(2ℓ− 1)a0 − i(ℓ− 1)aℓ−1aℓ + iℓaℓ−1aℓ

)

z2ℓ−2E3

+
(

−iℓaℓ +
√
2(ℓ+ 1)−

√
2(2ℓ− 1)

)

z3ℓ−1Ē1

+
(

−
√
2(ℓ− 1)aℓ−1 + 2

√
2ℓaℓ−1 − iℓaℓ + i(2ℓ− 1)aℓ

)

z3ℓ−2Ē2

+
(

−2
√
2ℓa1 +

√
2a1 − iℓaℓ + i(ℓ+ 1)aℓ

)

z2ℓĒ3.

It is straightforward to check that the solution does work.
We omit the much-lengthier odd-dimensional case.

�
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Corollary 5.2. The space Acfd(S
2, S6) is empty if d < 6 or d = 7, and nonempty

otherwise. Its pure dimension is d+ 8.

Proof. For d < 6, the set Harmf
d(S

2, S6), and therefore Acfd(S
2, S6), is empty [1].

The case d = 7 was explained at the beginning of this section. The remaining cases
are immediate consequences of Theorem 4.2 and Theorem 5.1

�

References

[1] João Lucas Marquês Barbosa, On minimal immersions of S2 into S2m, Trans. Amer. Math.
Soc. 210 (1975), 75–106. MR MR0375166 (51 #11362)

[2] J. Bolton, W. M. Oxbury, L. Vrancken, and L. M. Woodward, Minimal immersions of RP2

into CPn, Global differential geometry and global analysis (Berlin, 1990), Lecture Notes in
Math., vol. 1481, Springer, Berlin, 1991, pp. 18–27. MR 1178514 (94d:58044)

[3] J. Bolton and L. M. Woodward, Congruence theorems for harmonic maps from a Riemann

surface into CPn and Sn, J. London Math. Soc. (2) 45 (1992), no. 2, 363–376. MR 1171562
(93k:58062)

[4] , The space of harmonic maps on S2 into Sn, Geometry and global analysis (Sendai,
1993), Tohoku Univ., Sendai, 1993, pp. 165–173. MR MR1361179 (96k:58053)

[5] J. Bolton, L. M. Woodward, and L. Vrancken, Minimal immersions of S2 and RP2 into

CPn with few higher order singularities, Math. Proc. Cambridge Philos. Soc. 111 (1992),
no. 1, 93–101. MR 1131481 (92h:58049)

[6] John Bolton, Gary R. Jensen, Marco Rigoli, and Lyndon M. Woodward, On conformal

minimal immersions of S2 into CPn, Math. Ann. 279 (1988), no. 4, 599–620. MR 926423
(88m:53110)

[7] John Bolton, Luc Vrancken, and Lyndon M. Woodward, On almost complex curves in

the nearly Kähler 6-sphere, Quart. J. Math. Oxford Ser. (2) 45 (1994), no. 180, 407–427.
MR 1315456 (96k:53091)

[8] Robert L. Bryant, Submanifolds and special structures on the octonians, J. Differential Geom.
17 (1982), no. 2, 185–232. MR MR664494 (84h:53091)

[9] Eugenio Calabi, Minimal immersions of surfaces in Euclidean spheres, J. Differential Geom.
1 (1967), 111–125. MR MR0233294 (38 #1616)

[10] Quo-Shin Chi, Luis Fernández, and Hongyou Wu, Normalized potentials of minimal surfaces

in spheres, Nagoya Math. J. 156 (1999), 187–214. MR MR1727900 (2001i:53103)
[11] J. Eells and J. C. Wood, Harmonic maps from surfaces to complex projective spaces, Adv.

in Math. 49 (1983), no. 3, 217–263. MR 716372 (85f:58029)
[12] Luis Fernández, On the moduli space of superminimal surfaces in spheres, Int. J. Math.

Math. Sci. (2003), no. 44, 2803–2827. MR MR2003790 (2004m:53108)
[13] , The dimension of the space of harmonic 2-spheres in the 6-sphere, Bull. Lond. Math.

Soc. 38 (2006), no. 1, 156–162. MR MR2201614 (2007d:53104)
[14] , The dimension and structure of the space of harmonic 2-spheres in the m-sphere,

Ann. of Math. (2) 175 (2012), no. 3, 1093–1125.
[15] Tetsuzo Fukami and Shigeru Ishihara, Almost Hermitian structure on S6, Tôhoku Math. J.
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