
CCA 2006

The methods of approximation and lifting in
real computation

Manuel L. Campagnolo 1

D.M./I.S.A.
Lisbon University of Technology and SQIG/IT

Lisbon, Portugal

Kerry Ojakian 2

Department of Mathematics
SQIG - IT and IST, Portugal

Lisbon, Portugal

Abstract

The basic motivation behind this work is to tie together various computational complexity classes, whether
over different domains such as the naturals or the reals, or whether defined in different manners, via
function algebras (Real Recursive Functions) or via Turing Machines (Computable Analysis). We provide
general tools for investigating these issues, using a technique we call the method of approximation. We
give the general development of this method, and apply it to obtain 2 theorems. First we connect the
discrete operation of linear recursion (basically equivalent to the combination of bounded sums and bounded
products) to linear differential equations, thus providing an alternative proof of the result from Campagnolo,
Moore and Costa [3]. Secondly, we extend this to prove a result similar to that of Bournez and Hainry [1],
providing a function algebra for the real functions computable in elementary time. Their proof involves
simulating the operation of a Turing Machine using a function algebra. We avoid this simulation, using
a technique we call “lifting,” which allows us to lift the classic result regarding the Kalmar elementary
computable functions to a result on the reals. While we do not claim that our result is necessarily an
improvement (perhaps just different), we do want to make the point that our two techniques appear readily
applicable to other problems of this sort.

Keywords: Computable Analysis, Real Recursive Functions, Elementary Computable.

1 Introduction

We will study classes of functions with respect to their computational complexity,
showing connections between different models of computation. The classic case is
when the classes of functions have as their domain and range the natural numbers,
N, using something like Turing Machines to specify which functions are in the class.
More recent work has extended computational complexity to classes of functions

1 Email: mlc@math.isa.utl.pt
2 Email: ojakian@math.ist.utl.pt

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

Campagnolo and Ojakian

over the real numbers, R. In the classic case, there is one agreed upon concept of
computation and computational complexity with different models yielding the same
set of functions. This is not the case for the analogous work over the reals. We
will concentrate on two models of computation over the reals, “The Real Recursive
Functions” and “Computable Analysis.” The former originated with Moore [6] and
the latter with Grzegorczyk [4]. In Computable Analysis, Turing Machines are used
to characterize various classes of functions over the reals, with the idea being that
a real function is computable by a Turing Machine if it can be approximated to the
appropriate level of precision from approximations to the input of the function. In
the case of Real Recursive Functions, classes of functions are defined using function
algebras in which the discrete operations of recursion are replaced by operations
which find solutions to differential equations. Our goal is to study connections
between these three different kinds of function classes, the classic ones over the
naturals, the ones arising from Computable Analysis, and the ones arising from
Real Recursive Functions.

There have been a number of results tieing together these three different models
of computation. Campagnolo, Moore and Costa [3] describe a class of real functions
(they call L) that use linear differential equations in place of discrete recursion;
they show that the “discrete part” (definition 4.1) of L is exactly the usual Kalmar
elementary computable functions on the naturals. Building on this, Bournez and
Hainry [1] show that L extended by a certain limit operation is the class of C2

elementary computable functions on R. In section 4, we provide an alternative
proof of the result of [3]. In section 5 we prove a variation of the result from [1]; in
particular, we extend L by a different limit operation and show that this is exactly
the elementary computable functions on R.

The novelty we bring to these problems are two new techniques, which we call
“the method of approximation” and “lifting.” The first technique is used through-
out the paper. The basic idea of this technique is to define a general kind of
approximation relation that can hold between two classes of functions F and H.
Roughly speaking we will say that H approximates F , if for any required precision,
any function of F can be approximated to that precision with a function from H;
this will be written, roughly, as F ¹ H, and will in fact be a transitive relation
under the right conditions. Our approach to both the theorems of this paper is to
first show that two classes of functions approximate each other, and then derive
the desired equality from the sufficiently close approximation. The approximation
inclusions in our proofs proceed by induction on the construction of the function
algebra. Due to the transitive property of the approximation relation, to show one
class approximates another we can break down the proof into a series of natural
tasks.

The second technique, “lifting,” is the main tool used in section 5 to provide
a function algebra for the elementary computable functions on R. The idea is to
begin with a known complexity result on N, such as the fact that the elementary
time functions defined via Turing Machines are exactly the functions in the function
algebra FA[+, . , U, 0, 1; comp,

∑
,
∏

], and lift this to a result on R. The lifting can
be seen as a 3 step process. First we lift the result on N to an analogous result on
the rationals, Q, where the model treats the rationals as pairs of natural numbers.

2

Campagnolo and Ojakian

The second step (the most involved one) is to lift this to a result on Q, where the
rationals are given by oracle approximations (i.e. exactly the Computable Analysis
model restricted to Q). The third step is to lift this to R by applying limits. In the
work of [1], the proof involves coming up with a new Turing Machine simulation of
the class of elementary computable functions on R; we manage to avoid using a new
Turing Machine simulation, by re-using the classic result (which of course involves
a Turing Machine simulation) and lifting this to R.

We would like to claim that the advantages of these techniques are twofold.
First, they provide a different approach to some of these problems, which seems
to facilitate thinking about these problems, especially when dealing with function
algebras. Second, the techniques appear to be more amenable to generalization
and wider application than some of the earlier approaches. We claim this based on
other work in progress, and based on the character of the development. A number
of lemmas are general, not specific to the elementary computable functions. Fur-
thermore, it seems that a number of lemmas stated for the elementary computable
functions, could be stated in a more general way. The wider vision for this approach
is a collection of general tools with broad application. We present the beginning of
such a development.

2 Approximation

To develop formally the definition of approximation we will need to be able to talk
about functions and their arguments in a precise way. If a function f(x1, . . . , xk)
is defined on exactly Xk and takes values in X, we say it is an X−function, or
equivalently, that it has universe X; we do not consider vector valued functions.
We always assume the universe is a subset of R, and in fact the only particular
cases we consider in this paper will be N, Q, and R. To refer to function arguments
precisely we use the notion of “variables.”

Definition 2.1 (Variables)

• Let the set V = {vi | i ∈ N} be called variables. If we refer to a “set of variables,”
we always mean a finite subset of V.

• Suppose X ⊆ R is some set. For a set of variables ν ⊂ V, a function from ν to X

is called an assignment in X.
• If we write µ; ν we mean that sets of variables µ and ν are disjoint (while writing

µ, ν is neutral on this point).
• Suppose ν = {vi1 , . . . , vik}, where i1 < . . . < ik, and x ∈ X is a length k sequence

(i.e. x = x1, . . . , xk and all xj ∈ X). By ν → x, we mean the assignment which
maps vij to xj .

Definition 2.2 A function with variables from Xk to X is a finite set of vari-
ables ν, together with a rule which takes an assignment ν → a (a ∈ Xk) as input
and outputs an element of X. If f is the name of a function with variables, we may
write f(ν) in order to display its variables; in this case, those are all the associated
variables. We denote the value of f(ν) at some assignment ν → a by f(ν → a), or
simply f(a) if the variables and assignment are clear from context.

3

Campagnolo and Ojakian

Now we want to define a kind of substitution operation on variables. For exam-
ple, if f(x, y) = xy we could substitute a for x and b for y to obtain f(a, b) = ab; we
could also substitute z for both x and y obtaining f(z) = z2. Thus the operation
can be used to change the names of variables, or effect a genuine change in the
function (note that though formally we defined the variables V = {v1, v2, . . .}, we
will in fact freely use any lower case letters for variables).

Definition 2.3 Given a function on variables f(u1, . . . , uk) and a finite list (possi-
bly with repetitions) of variables v1, . . . , vk let g = sub(f ; v1, . . . , vk) be the function
with variables ν = {v1, . . . , vk} (i.e. the set of variables making up the list) such
that for any assignment ρ : ν → x, the value of g(ρ) = f(ρ∗), where ρ∗(ui) = ρ(vi).

We use the following convention, throughout the paper.

Remark 2.4 When we specify a set of functions with some arbitrary variables,
we then assume it is closed under any application of sub. If we specify a set of
functions without reference to variables we can always think of it as a set of functions
with variables by arbitrarily assigning variables to arguments of functions (distinct
variables for distinct arguments) and closing under the sub operation.

For the approximation relation we will use functions to translate between differ-
ent universes.

Definition 2.5 Suppose X and Y are sets of real numbers. An interpretation

from X to Y is a (possibly partial) injection from X to Y .

Notice that an interpretation is a function of one argument; if ω is an interpretation
and we write ω((a1, . . . , ak)), we mean (ω(a1), . . . , ω(ak)). For u ∈ X, we call
ω(u) ∈ Y the code of (or the interpretation of) u, and conversely, for v ∈ Y ,
we say that v codes ω−1(v) ∈ X. We always use the symbol “ω” for a generic
interpretation, sometimes using it without mentioning that it is an interpretation,
and not specifying its domain and range when clear from context.

Before defining the relation A ¹E,[ω] B, we give some intuition. First we point
out that E is a set of functions with universe R, A and B are sets of functions
with universes A and B respectively, where A,B ⊆ R, and ω : A → B is an
interpretation. The relation says that for any f ∈ A and any desired precision,
indicated by a function ε ∈ E , there is a function h ∈ B, such that h approximates
f with precision ε, under the interpretation ω. The latter condition concerning the
interpretation means that if we have a ∈ A and we want to use it in B, then we
really use ω(a), and if we have b ∈ B which we want to use in A, we use ω−1(b).
We now make this precise, starting with the relation on 2 functions (example 2.11
follows the definitions).

Definition 2.6 Suppose µ and ν are disjoint sets of variables, and A,B ⊆ R.
Suppose f(µ) is a function with variables, on universe A, and h(µ; ν) is a function
with variables, on universe B. Suppose ε(µ; ν) is a function with variables, on
universe R. Suppose ω : A → B is an interpretation. By

f ¹ε,[ω] h,

we mean that for all a, b ∈ Domain(ω), h(µ → ω(a), ν → ω(b)) is in the domain of

4

Campagnolo and Ojakian

ω−1, and the following holds:

|f(µ → a)− ω−1 ◦ h(µ → ω(a); ν → ω(b))| ≤ ε(µ → a; ν → b).

Definition 2.7 Let A, B, and E be classes of functions with variables with uni-
verses A, B, and R, respectively, such that A,B ⊆ R. Suppose ω : A → B is an
interpretation.

• We write
A ¹E,[ω]

− B
to mean that for any f(µ) ∈ A and ε(µ) ∈ E, there is h(µ) ∈ B, such that
f ¹ε,[ω] h.

• We write
A ¹E,[ω]

+ B
to mean that for any f(µ) ∈ A and ε(µ; ν) ∈ E, there is h(µ; ν) ∈ B, such that
f ¹ε,[ω] h.

Note that definition of approximation states that it needs to work for any precision
ε ∈ E ; in many applications it would suffice to just have one ε ∈ E , yet it appears
easier to inductively prove approximations for the stronger notion we use. Consider
some useful conventions regarding the approximation notation.

Remark 2.8 Suppose A and B are sets of functions on universes A and B respec-
tively. Consider A ¹E,[ω]

+/− B.

• If ω is missing we mean for ω = idA∩B (the identity function on A ∩B).
• When it is clear that something is an interpretation, we may omit the square

brackets.
• If E is missing, we assume E = {0} (i.e. the “approximation” must have no error).
• If we leave out “+” or “−”, we mean “−”.
• If we use “+/−” in a statement we mean that it holds for “+” substituted every-

where for “+/−”, or for “−” substituted everywhere for “+/−”.

The same conventions apply to the case where A and B are each replaced by
single functions. We now work out an example which we will in fact use later (in
lemma 4.9); we will use the following basic functions.

Definition 2.9 We define some functions on universe N.

• pair(a, b) = (1/2)(a + b + 1)(a + b) + a (a bijection from N× N to N)

• parity(n) =

0, if n even;

1, if n odd.

• gcd(a, b) = the greatest common divisor of a and b (note that gcd(a, b) = 0 only
if a or b is zero)

• code(a, b, s) = 2pair(a
gcd(a,b) ,

b
gcd(a,b)) + s, where we take “x/0” to be 0 (code is

motivated in the example)

We introduce the interpretation we will work with throughout this paper.

5

Campagnolo and Ojakian

Definition 2.10

• When we say that a rational is presented in (signed) lowest terms we mean
that it is given to us as (−1)k(a/b), where either a = b = k = 0, or a, b ∈ N,
k ∈ {0, 1}, with a, b > 0 and a and b relatively prime.

• We define an interpretation λ : Q → N. For any rational (−1)ka/b presented in
lowest terms, let λ((−1)ka/b) = 2pair(a, b) + k (which = code(a, b, k)).

• ρ1 and ρ2 are the unique functions from N to N such that for any rational (−1)ka/b

presented in lowest terms, ρ1(λ((−1)ka/b)) = a, and ρ2(λ((−1)ka/b)) = b.

Example 2.11 Consider the function mult(x, y) = xy, on Q. Suppose we want a
function mult∗(n,m) on N, such that it interprets mult (via λ), i.e. mult ¹λ mult∗,
which by our convention means mult ¹{0},[λ]

− mult∗. Given 2 rationals presented
in lowest terms as x = (−1)k(p/q), and y = (−1)c(a/b), their product is arrived
at by multiplying the tops of the fractions together, dividing by the product of
the bottoms, and taking account of the sign, to attain (−1)k+cpa/qb, where the
presentation may no longer be in lowest terms. To interpret this we carry out the
same kind of procedure, but on the natural numbers n and m which code rationals.
Thus the top should be ρ1(n)ρ1(m), the bottom should be ρ2(n)ρ2(m), and the sign
should be s(n,m) = delta(n)delta(m)parity(parity(n)+parity(m)), where delta(x) = 0
if x = 0 and 1 otherwise. To create the proper code, we need to put the fraction
in lowest terms, which just means dividing the top and bottom by their greatest
common divisor. The function code is defined to make this coding more convenient.
So finally, we end up with mult∗(n,m) = code(ρ1(n)ρ1(m), ρ2(n)ρ2(m), s(n,m)).
We can now check that the interpretation is correct, which in this case amounts to
showing:

(?)λ(mult(x, y)) = mult∗(λ(x), λ(y)), for x, y ∈ Q.

Consider x and y as above, and we then have that ρ1(λ(x)) = p, ρ1(λ(y)) = a,
ρ2(λ(x)) = q, ρ2(λ(y)) = b, parity(x) = k, and parity(y) = c. Thus the left side of (?)
is λ((−1)k+cpa/qb), and the right side is code(pa, qb, delta(λ(x))delta(λ(y))parity(k+
c)). These are equal by the definitions.

We now come to some definitions that for the purpose of this paper we could
avoid. However, they are essential for showing at least a bit of how these techniques
could become more general. We will define the concepts of “bounding class” and
“error class.” Intuitively, a class of functions is a bounding class if it can be used
to measure the growth rate of some other class of functions. A class of functions
is an error class, if it can be used to measure the error when one class of functions
approximates another.

Definition 2.12 A class of functions B is a bounding class if it has the following
properties:

(i) Its universe is R.

(ii) There is an f ∈ B such that f ≥ 1.

(iii) f ∈ B implies the value of f is always > 0.

(iv) For f(x; t) ∈ B, f(x; t) = f(x;−t), for any variable t.

6

Campagnolo and Ojakian

(v) f ∈ B implies f is increasing. Furthermore, for f(µ; t), where t is any variable
of f , f converges to infinity in the strong sense that for any positive N ∈ R,
there is a positive M ∈ R such that for any µ → x ∈ R, we have f(µ →
x;M) > N .

(vi) If β(ν) is in B and γ are variables disjoint from ν, then there is β∗(ν; γ) in B
such that β(ν) ≤ β∗(ν; γ).

(vii) If f, g ∈ B, then there are h1, h2, h3 ∈ B such that f + g ≤ h1, f ∗ g ≤ h2 and
f ◦ g ≤ h3.

Definition 2.13 A class of functions E is an error class if it has the following
properties:

(i) Its universe is R.

(ii) f ∈ E implies the value of f is ≥ 0.

(iii) For f(x; t) ∈ E, f(x; t) = f(x;−t).

(iv) f ∈ E implies f is decreasing. Furthermore, for f(µ; t), f converges to zero in
the strong sense that for any positive ε ∈ R, there is a positive M ∈ R such
that for any µ → x ∈ R, f(µ → x; M) ≤ ε.

(v) If β(ν) is in E and γ are variables disjoint from ν, then there is β∗(ν; γ) in E
such that β(ν) ≥ β∗(ν; γ).

(vi) If f ∈ E, then there is f∗ ∈ E such that f∗ ≤ (1/2)f .

We always use E to denote a generic error class, thus we do not always mention
this. We relate these kinds of classes by taking the reciprocal.

Definition 2.14 For a set of functions F , 1/F = {1/f | f ∈ F}.
Proposition 2.15 If B is a bounding class then 1/B is an error class.

Proof. We can check that 1/B satisfies the 6 defining properties. For example,
consider the last property. Suppose we have 1/f ∈ 1/B, and we need f∗ ∈ B such
that (1/f∗) ≤ (1/2)(1/f). Since f ∈ B, and B is a bounding class, there is f∗ ∈ B
such that f∗ ≥ f + f = 2f , which has the desired property.

2

Some examples of bounding classes are the following; T W is the only one we
will use in this paper.

Definition 2.16

(i) Let P be {a(|x1|+ 1)b . . . (|xn|+ 1)b | n ∈ N, a, b ∈ Q, a, b > 0}.
(ii) Let T W be {2···2

p

| p ∈ P}, that is the functions which consist of a tower of
powers of 2 with a function like a polynomial at the top.

Proposition 2.17 P and T W are bounding classes.

Thus 1/P and 1/T W are error classes. We will also be interested in another error
class defined using iterated logs; we actually iterate a modification of log2 so the
functions are defined on all of R.

Definition 2.18

7

Campagnolo and Ojakian

• Let lg(y) =

log2 y, if y ≥ 2;

1, else.

• let IL be {a · lg ◦ . . . ◦ lg(p) | p ∈ P, a ∈ Q, a > 0}
Proposition 2.19 1/IL is an error class.

Note that IL is not a bounding class (though it would be if we removed condition
f ∗ g ≤ h2 from the last line in the definition of bounding class).

Now we justify the approximation notation by showing it is a partial order under
the right conditions, that is it satisfies transitivity; when we reference “transitivity”
in this paper we mean some application of the following lemma.

Lemma 2.20 (Transitivity) Suppose A, B, and C are classes of functions on uni-
verses A, B, and C, respectively, and ω : B → C is an interpretation.

(i) If A ¹E+ B ¹E+/− C then A ¹E,idA∩B∩C
+ C

(ii) If A ¹E B ¹E+/− C then A ¹E,idA∩B∩C C
(iii) If Domain(ω) ⊆ A and A ¹E+ B ¹[ω] C then A ¹E,ω

+ C

Proof.

(i) Let f(µ) ∈ A, α(µ; ν) ∈ E and we need h(µ; ν) ∈ C such that |f(x)−h(x; y)| ≤
α(x; y) for x; y ∈ A ∩ B ∩ C. Since E is an error class there is α∗(µ; ν) ∈ E
such that α∗(µ; ν) ≤ (1/2)α(µ; ν). Let g(µ; ν) ∈ B such that |f(x)− g(x; y)| ≤
α∗(x; y) for all x; y ∈ A ∩ B. Let h(µ; ν) ∈ C such that |g(x; y) − h(x; y)| ≤
α∗(x; y) for x; y ∈ B ∩C. Thus |f(x)−h(x; y)| ≤ α∗(x; y)+α∗(x; y) ≤ α(x; y),
as required. Note that we need “+” for the first approximation, but “+” or
“−” works for the second one.

(ii) The proof is very similar to the previous one.

(iii) Let f(µ) ∈ A and α(µ; ν) ∈ E and we need h(µ; ν) ∈ C such that |f(x) −
ω−1 ◦ h(ω(x);ω(y))| ≤ α(x, y) for all x; y ∈ Domain(ω). Let g(µ; ν) ∈ B
such that |f(x) − g(x; y)| ≤ α(x; y) for all x; y ∈ A ∩ B. Let h(µ; ν) ∈ C
such that |g(x; y) − ω−1 ◦ h(ω(x);ω(y))| ≤ 0 for all x; y ∈ Domain(ω). Thus
|f(x)− ω−1 ◦ h(ω(x);ω(y))| ≤ α(x; y) for all x; y ∈ A ∩B ∩ Domain(ω), which
is enough since Domain(ω) ⊆ A,B. Note that the condition Domain(ω) ⊆ A

also ensures that A ¹E,ω
+ C makes sense.

2

A useful shorthand is the following “approximate equality.”

Definition 2.21 We write A ≈E+/− B to mean that both A ¹E+/− B and B ¹E+/− A
hold.

Note that with the definition of approximation (with its particular quantifiers) it is
important to read the definition in the right order. We use B ºE+/− A as another
way to write A ¹E+/− B.

Another important kind of relationship between classes of functions will be that
of one class dominating another.

8

Campagnolo and Ojakian

Definition 2.22 Suppose A and B are classes of functions on the same universe
X. We write A ≤ B if for every function f(x) ∈ A there is a function h(x) ∈ B
such that |f(x)| ≤ h(x) for all x ∈ X.

Again, note that due to quantifiers in the definition, the order in which we read the
expression is important; by writing B ≥ A we mean that A ≤ B.

3 Function Algebras And Operations

We will use function algebras to define most of our classes of functions. They are
defined by giving some basic functions and closing the class under operations on
functions.

Definition 3.1 (Operations) An operation on functions (or operation for short)
is a function which takes as input some functions with variables (and possibly some
variables), and outputs a single function with variables. An operation has universe
F (a set of functions) if it is defined on functions from F and returns a function in
F (for any F that we consider, there is always an associated X ⊆ R such that all
functions in F have universe X). If F is all the functions with universe X ⊆ R,
we say the operation has universe X.

For example, we could define an operation called “bounded sum,”
∑

(f(x; y); y; z),
with universe N, which takes one function and two variables and returns g(x; z) =∑z

y=0 f(x; y).

Definition 3.2 (Function Algebras) Suppose B is a set of functions (called basic

functions), and O is a set of operations. Then FA[B;O] is called a function al-

gebra, and it denotes the smallest set of functions containing B and closed under
the operations in O. For ease of readability, we often list the elements of B or O
simply as a list separated by commas.

An example of a function algebra we will use is the elementary computable functions
defined via bounded sums and bound products. Let

∏
be the operation on universe

N which takes a function f(x̄; y) and returns g(x̄, z) =
∏z

y=0 f(x̄; y). Let comp be
the operation which takes some functions and composes them. We define the basic
functions for this class.

Definition 3.3 Let basicN be the following functions with universe N: +, . ,P, 0, 1,
where P is the set of all projection functions on N and . is the usual cut-off

subtraction, defined by

x . y =

{
x− y if x ≥ y

0 otherwise
.

Thus FA[basicN; comp,
∑

,
∏

] is the elementary computable functions.

Definition 3.4 Let the function algebra FA[basicN; comp,
∑

,
∏

] be abbreviated by
FAN.

Recall that by convention all sets of functions (including ones defined via function
algebras) are implicitly functions with variables, closed under sub (notice that sub

9

Campagnolo and Ojakian

is in fact an operation, so the convention means that it is included in all function
algebras as one of its operations). Notice that in a function algebra, there could be
2 distinct ways to construct the same function. This highlights the syntactic side
of a function algebra, which will become an issue in the section 5.

Definition 3.5 Given a function algebra F , and f ∈ F , by a construction tree

of f we mean a tree which describes a construction of f in the function algebra.
The leaves of this tree are labeled by various basic functions in the algebra, and
internal nodes are labeled by operations in the algebra. Thus, we can think of the
tree as specifying how to build a function, starting with the leaves and moving up
the tree. Each node then can then be seen as specifying a syntactic term, as well
as a corresponding function. For the tree to be associated to f , means that f is the
function associated with the root of the tree.

We now develop a useful notion of one operation approximating another. The
rough idea is that one operation approximates another one if by beginning with
functions which approximate each other, applying the operations maintains this
approximation.

Definition 3.6 Suppose opA and opB are operations of the same arity k > 0 with
universes A and B respectively, we say opA ¹E,[ω]

+/− opB if for any f1, . . . , fk ∈ A
and any ε ∈ E whose variables contain all those of opA(f1, . . . , fk), there are
ε1, . . . , εk ∈ E, such that for any f∗1 , . . . , f∗k ∈ B, if fi ¹εi,[ω]

+/− f∗i (i = 1 . . . k) then

opA(f1, . . . , fk) ¹ε,[ω]
+/− opB(f∗1 , . . . , f∗k).

The notational conventions for approximation (remark 2.8) continue to apply for ap-
proximation with operations; recall that by convention we can choose “+” through-
out or “−” throughout in the above definition. Considering the above definition, it
is conceivable that we wind up considering f ¹ω f∗, where domain(ω) 6⊆ domain(f)
or domain(f∗) 6⊆ range(ω). This would raise some issues for the definitions, so we
simply rule this out by convention when dealing with operation approximation.

To make the definition more concrete consider a “interpreting” composition (it
will be used later). Supposing F is a class of functions, by compF we mean the
operation of composing functions from F ; if in place of F , we have a set A ⊆ R, we
mean that F includes all functions with universe A.

Proposition 3.7 Suppose X, Y ⊆ R and ω : X → Y is an interpretation. Then
compX ¹[ω] compY .

Proof. Suppose f(µ; t) and g(γ) are functions on universe X and fω(µ; t) and
gω(γ) are functions on universe Y such that f ¹ω fω and g ¹ω gω. We need to
show that f(µ; g(γ)) ¹ω fω(µ; gω(γ)). Fix any assignments µ → a; γ → b ∈ X, and
the following calculation proves this:

ω−1 ◦ fω(µ → ω(a); gω(γ → ω(b))) = ω−1 ◦ fω(µ → ω(a);ω ◦ g(γ → b))
= ω−1 ◦ ω ◦ f(µ → a; g(γ → b))
= f(µ → a; g(γ → b))

The first equality follows by g ¹ω gω and the second by f ¹ω fω.
2

10

Campagnolo and Ojakian

Definition 3.8 For sets of operations OA and OB, we write OA ¹E,[ω] OB if for
every opA ∈ OA, there exists a opB ∈ OB, such that opA ¹E,[ω] opB.

Given a function algebra, we can also think of it as specifying operations. For
example, for a function f(x; y) ∈ FAN, we could create the function g(x; u; z) =
u +

∑z
y=0 f(x; y). We can think of this as an operation which takes any function f

with universe N as input and outputs the function g.

Definition 3.9 Given a set of functions B on universe X ⊆ R, and operations O
on universe X, we let OP[B;O] be the following set of operations on universe X:

Include “function variables” along with the basic functions B, and consider the
function algebra defined by closing under the operations O. The resulting “func-
tions” which have at least one function variable can be seen as operations in which
any function (with universe X) can be substituted for a function variable.

The following is an easy but repeatedly used lemma.

Lemma 3.10 Suppose B1 and B2 are classes of functions and O1 and O2 are sets of
operations whose universes include B1 and B2, respectively. If B1 ¹E,[ω]

+/− FA[B2;O2]

and O1 ¹E,[ω]
+/− OP[B2;O2] then FA[B1;O1] ¹E,[ω]

+/− FA[B2;O2].

Proof. We show inductively on FA[B1;O1] that FA[B1;O1] ¹E,[ω]
+/− FA[B2;O2]. For

the basic functions B1 we are given that fact. Now consider any op ∈ O1 of arity
k and any f1, . . . , fk ∈ FA[B1;O1]. Let h = op(f1, . . . , fk) ∈ FA[B1;O1]. Given
any α ∈ E whose variables contain those of h, we need h∗ ∈ FA[B2;O2] such that
h ¹α,[ω]

+/− h∗. Since op ∈ O1, we have op∗ ∈ OP[B2;O2] such that op ¹α,[ω]
+/− op∗,

meaning that we have α1, . . . , αk ∈ E such that for any f∗1 , . . . , f∗k such that f1 ¹α1;[ω]
+/−

f∗1 , . . . , fk ¹αk;[ω]
+/− f∗k , we have op(f1, . . . , fk) ¹α,[ω]

+/− op∗(f∗1 , . . . , f∗k). Inductively we
have such f∗1 , . . . , f∗k , so we let h∗ = op∗(f∗1 , . . . , f∗k).

2

The previous lemma demonstrates the utility of approximating an operation.
The straightforward approach to showing that some function algebra contains an-
other (or approximates another) is to work inductively on the particular function
algebra in question. For another related claim, the same process is carried out,
starting from scratch. With the concept of approximating an operation we can
show once and for all the resources needed to approximate an operation and then
this fact can be re-used in different contexts. This technical point fits in with our vi-
sion of trying to develop a collection of generally applicable tools, within the context
of the method of approximation.

We will now show how composition can be approximated in a general way (in
this paper it will be used for two special cases). We introduce some terminology in
order to make the claim.

Definition 3.11 |b̄− ā| abbreviates |b1 − a1|+ . . . + |bn − an|.
We define a modification of the Lipshitz condition.

Definition 3.12

11

Campagnolo and Ojakian

• Let f be a function on n arguments, and L a function on 2n arguments. f is
L−lipshitz if the universe of L contains that of f and |f(b̄)−f(ā)| ≤ L(b̄; ā)|b̄− ā|
for all ā and b̄ in the universe of f .

• Supposing F and L are classes of functions, we say F is L−lipshitz if for every
f ∈ F there is an L ∈ L such that f is L−lipshitz.

At first the next lemma may seem to say that as the bounds get worse, the ap-
proximation gets better. However, note that for two bounding classes, say P and
T W, opA ¹1/T W

+ opB is not a stronger claim than opA ¹1/P
+ opB, since in the latter

approximation, the functions to which the operations are applied are only within
1/P accuracy.

Lemma 3.13 Suppose B is a bounding class and F is some class of functions which
is B−Lipshitz, closed under composition, and satisfies F ≤ B. Then compF ¹1/B

+

OP[sub, comp].

Proof. Suppose f(u), g(x) ∈ F (one variable for simplicity) and r(x; y) ∈ B. We
need α1,α2 ∈ B such that if f ¹1/α1 f∗ and g ¹1/α2 g∗, then for h(x) = f(g(x)), we
can construct h∗ from f∗, g∗, comp, and sub, such that h ¹1/r h∗.

Let r∗(z; y) be r(x; y) with a new variable z substituted for x. Let s(u; y; z) ∈ B
such that s(u; y; z) ≥ r∗(z; y); note that s(u; y; z) and α1(u; y; z) = 2s(u; y; z) are in
B by the properties of bounding classes.

Now we describe α2. Using our assumptions on F , let L(b; a) be the B−Lipshitz
function for f and let bg be a function in B such that |g(x)| ≤ bg(x). Let p(x; ȳ) =
1 + 2r(x; ȳ)L(bg(x);bg(x) + 1). By the properties of bounding classes, there is
α2(x; y) ∈ B such that |p| ≤ α2.

Now suppose f∗(u; y; z) is such that f ¹1/α1 f∗ and g∗(x; ȳ) is such that g ¹1/α2

g∗. Let h∗(x; ȳ) = f∗(g∗(x; ȳ); ȳ;x). Note that h∗ is a result of comp and sub used
on f∗ and g∗. Note that f∗ has access to the approximation g∗ and all the variables
in question; this is a reason we need arbitrarily long lists of parameters. Now we
show h ¹1/r h∗. We start with:

|h(x)− h∗(x; ȳ)| ≤ |f(g(x))− f(g∗(x; ȳ))|+ |f(g∗(x; ȳ))− f∗(g∗(x; ȳ); ȳ; x)|.
We look at the above two terms. Consider the first one.

|f(g(x))− f(g∗(x; ȳ))| ≤L(g(x); g∗(x; ȳ)) |g(x)− g∗(x; ȳ)|
≤L(g(x); g(x) + 1) |g(x)− g∗(x; ȳ)|
≤L(g(x); g(x) + 1)

1
2r(x; ȳ)L(bg(x);bg(x) + 1)

≤ 1/2r(x; ȳ)

For the second inequality note that g∗ is within at least 1 of g(x) for all x; y by the
definition of p(x; y); thus in particular g∗(x; ȳ) ≤ g(x) + 1. We use throughout, the
fact that functions in B are increasing. Consider the second term.

|f(g∗(x; ȳ))− f∗(g∗(x; ȳ); ȳ; x)| ≤ 1/α1(x; ȳ; x) ≤ 1/2r(x; y), by definition of α1.

Thus |h(x)− h∗(x, ȳ)| ≤ 1/2r + 1/2r = 1/r.
2

12

Campagnolo and Ojakian

4 Linear Recursion versus Linear Differential Equations

In this section we apply the ideas of approximation to reprove a result from [3], which
says that the “discrete part” of a set of R−functions (whose essential operation is
linear differential equations) is exactly the elementary computable functions (which
can be defined with linear recursion as its essential operation).

Definition 4.1 (from [3]) Suppose F is a class of functions on R. By the discrete

part of F , denoted dp(F) we mean the following class of functions over universe N:
First take all the functions in F whose values are in N on domain N; then restrict
these functions just to domain N.

The key analog operation on R is the operation of obtaining a solution to a linear
differential equation; for k ∈ N by Ck we mean the k−times continuously differen-
tiable functions on R.

Definition 4.2 LI is the operation which takes any C2 functions with T W bounds
g1(x̄), . . . , gn(x̄), s11(x̄, y), . . . , snn(x̄, y) and returns h1(x̄, y) where we have the fol-
lowing defining equations:

h1(x̄, 0) = g1(x̄)
...

hn(x̄, 0) = gn(x̄)
∂
∂y (h1(x̄, y)) = s11(x̄, y)h1(x̄, y) + . . . + s1n(x̄, y)hn(x̄, y)

...
∂
∂y (hn(x̄, y)) = sn1(x̄, y)h1(x̄, y) + . . . + snn(x̄, y)hn(x̄, y)

Definition 4.3 Let basicR be the following functions with universe R: 0, 1, −1,
π, P, θ3, where P is the set of all projection functions on R (note that independent
of the universe, we use the same notation for projection functions), π is the famous

constant, and for any k ∈ N (k > 0), θk(x) =

0, x < 0;

xk, x ≥ 0.
, a Ck−1 version of the

discontinuous function which indicates whether a number is to the left or right of
zero.

The function algebra on the reals that we will now be concerned with is:

FA[basicR; comp, LI].

Note that the restriction in LI to C2 functions with T W bounds has no effect on this
class, but is used in approximating LI in lemma 5.22. We use the following notation
from earlier papers.

Definition 4.4 Let L abbreviate the function algebra FA[basicR; comp, LI].

The goal we are now aiming for is theorem 4.25:

dp(L) = FAN.

13

Campagnolo and Ojakian

The proof in [3] proceeds by showing the two inclusions. The inclusion “⊇” is
proved inductively on the construction of the functions in FAN, using the operations
of L at each step. The inclusion “⊆” is again proved by induction, this time on the
functions in L, but rather than using the operations of FAN at each step, a Turing
Machine is constructed, and it is shown how in elementary time an appropriately
close approximation can be carried out; of course this relies on the well-known fact
that the function algebra FAN corresponds to elementary time. We will give an
alternative proof of this inclusion in which we do not use this fact or use any Turing
Machines; the proof proceeds naturally using the operations of the function algebra
itself.

If one were to begin thinking about a proof along these lines, an apparent prob-
lem presents itself. A function f ∈ dp(L) is in there due to some associated con-
struction tree (recall definition 3.5). While f (the function associated with the root
of the construction tree) is required to have natural number values on natural num-
ber inputs, there is no such constraint on the functions associated with other nodes
in the construction tree (they maybe real valued). To inductively show that f is in
FAN, requires that we deal with these non-root nodes in FAN; however, it is unclear
how to deal with real number values in FAN. The way we get around this issue is to
introduce an intermediary function algebra with universe Q. This function algebra
will naturally approximate L (corollary 4.24). Then we can naturally interpret this
function algebra on Q into FAN (see corollary 4.12). The theorem then follows by
the transitivity of the approximation relation. At the end of this section we discuss
a number of advantages of this approach.

The main operations of the function algebra on Q will be a kind of bounded
sum (line

∑
) and bounded product (line

∏
) on the rationals. They are defined so

that they preserve continuous functions when applied to continuous functions. This
property is important for the next section, and while not important for this section,
presents little complication for it. We call the operation (on f(x; y)) a line sum
because for a fixed x ∈ Q, the plot of g(x; z) = line

∑
(f, y, z) will look like this: For

each integer n, g(x;n) has some value in Q (namely f(x; 0)+f(x; 1)+ . . .+f(x;n)),
and the rest of g is described by connecting successive values on integers by straight
lines. Products are similar. Note that the operations will be defined for negative
rationals due to our convention that

∑z
y=0 f(x; y) or

∏z
y=0 f(x; y) will be taken to

be zero for integers z < 0.

Definition 4.5 We define operations line
∑

and line
∏

with universe Q. Suppose
f(x̄; y) is a function on universe Q.

• line
∑

(f, y, z) = g, where
g(x̄; z) = (1 + bzc − z)

∑bzc
y=0 f(x̄; y) + (z − bzc)∑dze

y=0 f(x̄; y).
• line

∏
(f, y, z) = h, where

h(x̄; z) = (1 + bzc − z)
∏bzc

y=0 f(x̄; y) + (z − bzc) ∏dze
y=0 f(x̄; y).

We have the following basic functions.

Definition 4.6 Let basicQ be the following functions with universe Q: 0, 1, −1,
P, ∗, +, div, θ1, where P is the set of projection functions, θ1 is understood as a
function with universe Q (though it was originally defined for R), and

14

Campagnolo and Ojakian

div(x) =

1/x, if x ≥ 1;

1, else.

Our function algebra of interest is then:

FA[basicQ; comp, line
∑

, line
∏

].

Notice that all the functions in this class are continuous; in the next section we
will define an extension of this function algebra which contains discontinuous func-
tions; this motivates the following abbreviation (in the next section we will define
FAQ(disctn)).

Definition 4.7 Let the function algebra FA[basicQ; comp, line
∑

, line
∏

] be abbre-
viated by FAQ(ctn).

If it appears to you that the basic functions are redundant, you are probably correct.
We should be able to derive ∗ and + in the class, as is typically done for these
functions in FAN. However, for us the classes on the rationals are merely a means
to an end, so we include possible redundancy to simplify the technical development.
We define some functions contained in FAQ(ctn).

Definition 4.8 The following are some continuous functions with universe Q.

• |x| = the absolute value of x.

• sgn(x) =

0, if x ≤ 0;

x, if 0 < x < 1;

1, if x ≥ 1.

• δ(x) =

x, if 0 ≤ x < 1;

−x, if −1 < x < 0;

1, if |x| ≥ 1.

They are all in FAQ(ctn), because

• |x| = θ1(x) + θ1(−x), and
• sgn(x) = θ1(x)− θ1(x− 1), and
• δ(x) = sgn(x) + sgn(−x).

Our goal now is to show that FAQ(ctn) can be interpreted in FAN and that it can
approximate L. In example 2.11, we in fact showed how multiplication in basicQ
could be interpreted (via λ) in FAN; the other functions of basicQ can be handled
similarly, thus we have the following lemma (note that FAN us a strong class and
we will frequently use the fact that it contains many typical functions).

Lemma 4.9 basicQ ¹λ FAN

Lemma 4.10 line
∏ ¹λ OP[basicN; comp,

∑
,
∏

]

Proof. Let f(ν; y) be a function with universe Q, and we assume we have an
interpretation (via λ) fλ(ν; y), meaning that for any assignment ν → b; y → a we

15

Campagnolo and Ojakian

have f(ν → b; y → a) = λ−1 ◦ fλ(ν → λ(b); y → λ(a)). We need an interpretation
of line

∏
(f) using fλ. Recall that line

∏
is defined via 2 products; we just consider

h(ν; z) =
∏bzc

y=0 f(ν; y), since the other is similar and we can put them together
easily. Our goal is hλ(ν; z) such that h ¹λ hλ. We let down(x) = bxc, x ∈ Q.
We have downλ ∈ FAN, such that down ¹λ downλ. The rest of the interpretation
is like that for multiplication in example 2.11. To find the bounded product, we
find what the top and bottom of the resulting fraction should be, along with its
sign and put this together properly. In the following development, we assume that
variable z (which indicates the range of the product) will code a positive rational,
since we can easily design a function with cases depending on the sign of z. In the
following 3 functions (top, bottom, and s), we will want to range over fλ(ν; y) for
y = λ(0), λ(1), . . . , λ(bcc), where c is the value z will be assigned to. To do this,
note that ρ1(downλ(λ(c))) = bcc; this motivates the range of the products/sums
below to being ρ1(downλ(z)). To range over λ(y) as y = 0, 1, . . . , bcc we will use the
fact that a non-negative integer y presented as a fraction in lowest terms is of the
form (−1)0(y/1) and so we code it as code(y, 1, 0).

Let top(ν; z) =
∏ρ1(downλ(z))

y=0 ρ1(fλ(ν; code(y, 1, 0))).

Let bottom(ν; z) =
∏ρ1(downλ(z))

y=0 ρ2(fλ(ν; code(y, 1, 0))).

Let s(ν; z) = parity(
∑ρ1(downλ(z))

y=0 parity(fλ(ν; code(y, 1, 0))))

Then hλ(ν; z) = code(top(ν; z), bottom(ν; z), s(ν; z)).
2

The proof for sums is similar, though finding the “top” is a bit more technically
involved.

Lemma 4.11 line
∑ ¹λ OP[basicN; comp,

∑
,
∏

]

Corollary 4.12 FAQ(ctn) ¹λ FAN

Proof. By lemma 3.10, it suffices to show that basicQ ¹λ FAN, and that FAN
interprets the 3 operations in the rational class. The last two propositions showed
that both line sums and products can be interpreted. Proposition 3.7 shows that
composition can be interpreted.

2

Now we develop the approximation of L by FAQ(ctn). Approximating the basic
functions is relatively straightforward, as is the following bound.

Proposition 4.13 T W ≤ FAQ(ctn).

Lemma 4.14 basicR ¹1/T W
+ FAQ(ctn)

Proof. Except for θ3 and the constant π, all the functions and constants of basicR
are extensions of something in basicQ and so we approximate them with zero error
on Q. We can approximate θ3 with zero error since θ3 = θ1 ∗ θ1 ∗ θ1. For π we
carry out a sufficiently long Taylor series approximation, which is simulated using
line

∑
and other simple functions from FAQ(ctn); notice the importance of div. The

16

Campagnolo and Ojakian

necessary length of the series will be a function from T W, which we can dominate
in FAQ(ctn), by proposition 4.13.

2

Linear recursion will be a useful tool for capturing Euler’s Method. We begin
with the definition on N.

Definition 4.15 LR is the operation which takes any functions on universe N,
g1(x̄), . . . , gn(x̄), s11(x̄, y), . . . , snn(x̄, y), t1(x̄, y), . . . , tn(x̄, y) and returns h1(x̄, y),
where we have the following equations:

h1(x̄, 0) = g1(x̄)
...

hn(x̄, 0) = gn(x̄)

h1(x̄, y + 1) = s1n(x̄, y)h1(x̄, y) + . . . + s1n(x̄, y)hn(x̄, y) + t1(x̄, y)
...

hn(x̄, y + 1) = sn1(x̄, y)h1(x̄, y) + . . . + snn(x̄, y)hn(x̄, y) + tn(x̄, y)

Special cases of LR yield the operations
∑

and
∏

. It is relatively straightforward
to see that we can also obtain LR with

∑
and

∏
.

Proposition 4.16 LR ¹ OP[basicN; comp,
∑

,
∏

]

We define a version of linear recursion for the rationals, which (as with line
∑

and
line

∏
) yields continuous functions when it begins with continuous functions.

Definition 4.17 lineLR is the operation with universe Q which takes some input
functions f1, f2, . . . and returns:

h(x; y) = (1 + byc − y)LR(f1, f2, . . . , byc) + (y − byc)LR(f1, f2, . . . , dye);
where y is the recursion variable, and we take the value of the function returned by
LR to be 0 if the recursion parameter (byc or dye) is less than zero.

We state a lemma that results from “lifting” proposition 4.16 to the rationals.
The proof will follow from some later involved work (the proof appears after corol-
lary 5.19).

Lemma 4.18 lineLR ¹ OP[basicQ; comp; line
∑

, line
∏

]

Definition 4.19 Given a class of differentiable R−functions F , let F ′ = {f ′ | f ∈
F} and F ′′ = {f ′′ | f ∈ F}, where by f ′ and f ′′ we mean that f is differentiated
with respect to any one variable.

The following is proved inductively (details appear in [3], propositions 4.3 and 4.4).

Proposition 4.20 ([3]) The functions in L are C2 and L,L′,L′′ ≤ T W.

Lemma 4.21 LI ¹1/T W
+ OP[basicQ; comp, line

∑
, line

∏
]

Proof. We use Euler’s method to approximate the application of any linear dif-
ferential equation. We will use the operation lineLR in a direct manner to write

17

Campagnolo and Ojakian

down the approximating Euler equations (recall that by lemma 4.18 we can freely
use lineLR). The basic idea is straightforward; to approximate an application of LI
to some accuracy in 1/T W we choose sufficiently accurate approximations to the
functions that LI is applied to and we choose a sufficiently large number of intervals
in T W for the Euler approximation. The point is that the error function with its
exponential is easy to overcome with functions from T W.

Suppose we define h(x) from a system of linear differential equations, where the
function F describes the differential equation, that is h′ = F (x, h); we just display
the variable x, the one with respect to which we differentiate. We want to describe
a Q−function h∗ that approximates this h to some precision within 1/T W (we
really mean to accuracy 1/α for some α ∈ T W, but for ease of exposition, in this
proof, we will avoid working out the bounds exactly, referring to 1/T W and T W a
bit informally in this way). We start with Q−functions which approximate within
1/T W the functions defining the system of linear differential equations, that is, we
have F ∗ which approximates F to within 1/T W. Approximation h∗ will use F ∗ to
simulate Euler’s method on the interval [0, x], dividing the interval up into some
number of subintervals n, given by the points 0 = x0 < x1 < . . . < xn = x, where
each interval [xi, xi+1] is of length δ = x/n. We use hi to denote the approximation
of h(xi). With lineLR it is straightforward to write down the Euler equations:
hi+1 = hi + δF ∗(xi, hi); note that it is a linear recursion because F ∗ is and because
the form of the Euler equations is. Note that in writing down these equations we
have the needed functions at hand: ∗, +, div (div is used to find δ).

To check that the error really is bounded by 1/T W, we follow the standard error
analysis for Euler’s method. Let ei = hi−h(xi), the (global) error after i steps. We
can expand h(xi+1) = h(xi) + δF (xi, h(xi)) + δτ , where τ is a bound on the (local)
error at any step of Euler’s method. We can bound τ by δd, where d is a bound on the
second derivative of h on the entire interval [0, x]; by proposition 4.20 we have a T W
bound on d; note that the bound holds it on the entire interval because functions in
bounding classes are increasing. Suppose that our approximate differential equation
F ∗ is within r precision to F , where r is in 1/T W. Because F describes a linear
differential equation, we can factor out of the equation a function to arrive at a
Lipshitz function L with a T W bound on it; that is |F (x, h1)−F (x, h2)| ≤ L|h1−h2|,
for L ≤ T W. Now we can calculate an error recurrence:

|ei+1|= |hi+1 − h(xi+1)|
= |(hi + δF ∗(xi, hi))− (h(xi) + δh′(xi) + δτ)|
≤ |ei|+ δ|F (xi, hi)− h′(xi)|+ δ|τ |+ δr

≤ |ei|+ δL|hi − h(xi)|+ δ|τ |+ δr

= |ei|(1 + δL) + δ|τ |+ δr

We solve the recurrence to arrive at:

|ei| ≤ exL(|e0|+ δd + r).

We now see that we can make this error less than 1/T W because we are given L

and d with their T W bounds, but we can obtain arbitrarily good 1/T W bounds on
r, δ, and |e0|.

2

18

Campagnolo and Ojakian

We will use the Lipshitz property to approximate composition.

Proposition 4.22 If F is a class of functions such that F ′ ≤ B, where B is a
bounding class, then F is B−Lipshitz.

Proof. Let h(x1, . . . , xn) be in F . To find a Lipshitz function, consider:

|h(b̄)− h(ā)| ≤ |h(b1, b2, . . . , bn)− h(a1, b2, . . . , bn)|
+ |h(a1, b2, . . . , bn)− h(a1, a2, b3 . . . , bn)|

...
+ |h(a1, . . . , an−1, bn)− h(a1, . . . , an)|

Consider the first term |h(b1, b2, . . . , bn) − h(a1, b2, . . . , bn)|. Consider the function
∂

∂x1
h(x1, x2, . . . , xn) ∈ F ′ and let β(x1, . . . , xn) ∈ B such that β dominates it. Let

L1(b; a) = β(|a1| + |b1|, b2, . . . , bn), which is dominated by a function in B (which
for convenience we also call L1). Since β is increasing and |a1|, |b1| ≤ |a1|+ |b1|, L1

dominates the derivative ∂
∂x1

h(x1, b2, . . . , bn) for all x1 on the interval between a1

and b1, and so we have:

|h(b1, b2, . . . , bn)− h(a1, b2, . . . , bn)| ≤
|(h(a1, b2, . . . , bn) + |b1 − a1|L1(b; a))− h(a1, b2, . . . , bn)| = L1(b; a)|b1 − a1|.

We obtain L2(b; a), . . . , Ln(b; a) for all the terms and we bound the sum by some-
thing in B, yielding our Lipshitz function.

2

Using proposition 4.22 and proposition 4.20, the following is immediate.

Corollary 4.23 The functions in L are T W−Lipshitz.

Corollary 4.24 L ¹1/T W
+ FAQ(ctn)

Proof. By lemma 3.10, it suffices to show that basicR ¹1/T W
+ FAQ(ctn), and that

FAQ(ctn) approximates the 2 operations in the real class. The last proposition
shows that LI can be approximated. Lemma 3.13 shows that composition can be
approximated (we set B = T W and F = L in that lemma, and note that by
proposition 4.20 and corollary 4.23 we satisfy the conditions of that lemma).

2

Now we finish the alternative proof of [3], lemma 4.8 (note that we are only
interested in an alternative proof of one of the directions in the below equality).

Theorem 4.25 dp(L) = FAN

Proof.

• ⊇: This direction is carried out inductively in [3] and we make no modification
to the existing proof.

• ⊆: By corollaries 4.24 and 4.12, respectively, we have:
L ¹1/T W

+ FAQ(ctn) ¹λ FAN.
By transitivity we have L ¹1/T W,λ

+ FAN. Let f(x) ∈ dp(L), and take any α(x; y) ∈
1/T W, so we have f∗(u; v) ∈ FAN such that f ¹α,λ f∗. By fixing y to a large

19

Campagnolo and Ojakian

enough number, we have α(x; y) ≤ 1/3 for all x and can obtain h(u) ∈ FAN
such that for x ∈ N, |f(x) − λ−1 ◦ h(λ(x))| ≤ 1/3. Since f(x) ∈ N for x ∈ N,
f(x) = nearest(h(λ(x))) ∈ FAN, where nearest(a) returns the closest natural to
the rational coded by a. Note that we use the fact that both nearest and λ|N are
in FAN.

2

We point out here that most of the work of this section is needed for the theorem
of the next section. We re-use exactly corollary 4.24 in the next section; in the
next section we need to prove the opposite approximation in corollary 5.24 and
both approximations are used to obtain corollary 5.25. Thus given that we want
the result of the next section, the only extra work in this section is the relatively
straightforward work with the interpretation.

5 Connection to Computable Analysis via Lifting

We will use standard notions from Computable Analysis following the development
in Ker-I Ko [5]. For the most part he restricts his attention to functions defined
on a finite interval, while we consider functions defined on all of R. Thus in this
work, the main difference is that a number of notions will depend on both the
input value to the function, as well as the usual accuracy parameter. We will be
concerned with the elementary computable functions over various universes. By
E(R) we mean the total R−functions f(x) which can be computed to accuracy
1/n in time t(x; n), where t ∈ T W. The real input x is given by an oracle which
gives x to any demanded precision as a dyadic rational (the set of dyadic rationals
is denoted D). Note that we use the approximation of the form 1/n rather than
1/2n, since for elementary computable functions such distinctions have no effect.
We will be relating such classes for N, Q, and R. For R, we always use the typical
model above, which we can think of as a kind of “approximation model.” For N, we
compute exactly since we know the input exactly, thus on N we are using a “discrete
model;” we let E(N) be the usual elementary computable functions on N. For Q,
we have two options. We can use the approximation model used for R, where it
just happens that for a function f(x), x and f(x) are always in Q; we call this class
of functions apxE(Q). An alternative is to use a discrete model for Q (which we
will call disE(Q)), for which the following definitions of a kind of denominator and
numerator function will be convenient.

Definition 5.1

• Let D(0) = N(0) = 0.
• For a rational (−1)ka/b presented in lowest terms, let D((−1)ka/b) = (−1)kb and

N((−1)ka/b) = (−1)ka.

A Q−function f(x) is in disE(Q) if there is an elementary time Turing Machine
on N that computes it in the following sense: On input x ∈ Q the machine is given
the triple (|N(x)|, |D(x)|, s(x)), where s(x) is the sign of x, and we must compute
the triple (|N(f(x))|, |D(f(x))|, s(f(x))); note that the time allowed depends on the
length of the representation of x as a triple of natural numbers (for a sequence

20

Campagnolo and Ojakian

of numbers x we use a sequence of triples). Note that apxE(Q) contains only
continuous functions, while disE(Q) contains discontinuous functions. The general
approach of this section is to lift complexity results from N to ones on R. To do
this we will see that E(N) and disE(Q) are easily related and that apxE(Q) and
E(R) are closely connected. The main work will be in providing a useful connection
between apxE(Q) and disE(Q).

We introduce the technique of lifting in this section and apply it to prove a result
that is similar to that of Bournez and Hainry [1]. One of their main claims is that:

E(R) = L∗ (for C2 functions), where the latter class is L with a certain limit
operation added.

They prove both inclusions, where E(R) ⊆ L∗ is the more involved one, done by
showing how to simulate Turing Machines in L∗. In our result we will use a different
limit operation.

Definition 5.2 Suppose E is a class of error functions. E−LIM is the operation
which takes a function ε(ν; t) ∈ E and any function f(ν; t) and returns F (ν) =
limt→∞f(ν; t) if the limit exists and F ¹ε f .

For a class of functions F , we write F(E−LIM) to indicate the class F closed under
the operation E−LIM. We will prove the following (in theorem 5.26):

E(R) = L(1/IL−LIM).

The proof avoids the use of a Turing Machine simulation, and instead proceeds
by lifting the existing result on the naturals (of course the original result on the
naturals involves a Turing Machine simulation, but the point is that we do not carry
out another simulation on the reals as is done in [1]). It is arguable as to which
proof is simpler or which result is better, but this work offers another perspective
and it does seem that these tools should be more generally applicable.

To relate disE(Q) and apxE(Q) we will use modulus functions. These func-
tions enforce a strong notion of continuity. It is well-known that the functions of
Computable Analysis are continuous on their domain, but they have a stronger
property of having modulus functions, which roughly means that their continuity is
witnessed by modulus functions. We modify the usual notion to allow the input x

to function f(x) to also be input to the modulus function (in addition to the usual
accuracy parameter).

Definition 5.3

• Suppose f(x) and m(x; z) are functions in which the universe of f is contained
in the universe of m. Then m is a modulus for f if :

For all x̄ and ȳ in the universe of f , and z 6= 0 in the universe of m,
|x̄− ȳ| ≤ m(x̄; z) implies |f(x̄)− f(ȳ)| ≤ 1/z.

• The class of functions M is a modulus for the class of functions F if for any
f ∈ F , there is m ∈M such that m is a modulus for f .

21

Campagnolo and Ojakian

The following proposition is similar to corollary 2.20 from [5], which is an analogous
statement for the real polynomial time functions on a bounded interval.

Proposition 5.4 apxE(Q) and E(R) both have a 1/T W− modulus.

We will need some technical lemmas. The following extends a function on do-
main Z to a well-behaved continuous function on domain R.

Definition 5.5 Suppose f(x1, . . . , xk) is defined on Z (taking on values in R). Let
f̂ be defined on R as follows:

f̂(x1, . . . , xk) =

f(bx1c, . . . , bxkc)(bx1c+ 1− x1) . . . (bxkc+ 1− xk)
+ f(dx1e, bx2c, . . . , bxkc)(x1 − bx1c)(bx2c+ 1− x2) . . . (bxkc+ 1− xk)

...
+ f(dx1e, . . . , dxke)(x1 − bx1c) . . . (xk − bxkc),

where the intention is to range over all 2k combinations of b·c and d·e applied to the
xi; corresponding to whether bxc or dxe is applied, we multiply f by (bxc+ 1− x)
or (x− bxc), respectively.

Proposition 5.6 Suppose f is a function with domain Z.

• For x ∈ Z, f̂(x) = f(x).
• f̂ is continuous.
• min(f(bx1c, . . . , bxkc), . . . , f(dx1e, . . . , dxke)) ≤ f̂ , and

f̂ ≤ max(f(bx1c, . . . , bxkc), . . . , f(dx1e, . . . , dxke)), where the minimum and
maximum are taken over all 2k combinations.

The following lemma makes the basic connection between the two models of
computation on the rationals, the approximation model and discrete model.

Lemma 5.7 apxE(Q) ≈1/T W
+ {f ∈ disE(Q) | f has a modulus in 1/T W}.

Proof. We prove the two approximate inclusions.

• (⊇) We prove the stronger claim of containment. Let f(x) ∈ disE(Q) (we consider
just one variable for simplicity), with a modulus m(x; z) ∈ 1/T W, and we show
that f ∈ apxE(Q). Let M be the Turing Machine which computes f where the
input x ∈ Q is given as a triple of natural numbers.

We design a Turing Machine N to put f in apxE(Q). N has an oracle for x

and an accuracy input z. First compute m(x∗; z), where x∗ is a number such that
x ≤ x∗ (easily obtained by querying for close enough approximation to x and
then adding one). Put m(x∗; z) on the query tape to get some y such that |x −
y| ≤ m(x∗; z) ≤ m(x; z) (the last inequality holds since functions in error classes
decrease). Also note that y is a dyadic of length ≤ m(x∗; z) (by usual definitions
in Computable Analysis, see [5], definition 2.1, requirement “prec(φ(n)) = n”)
and so for y = p/q, we have p, q ≤ m(x∗; z). Now we simply run M on (p, q), thus
outputing exactly f(y) (we ignore the sign of y for simplicity), and due to the
modulus condition we know that |f(x) − f(y)| ≤ 1/z. This is within T W time
in x and z because the length of the p and q are larger by at most a function in
T W and M ’s running time is bounded by a function in T W.

22

Campagnolo and Ojakian

• (¹1/T W
+) Let f(x) ∈ apxE(Q), and let α(x; y) ∈ T W, and we need f∗(x; y) ∈

disE(Q) such that f ¹1/α f∗ and f∗ has a modulus in 1/T W. Let M be the
Turing Machine that computes f in the Computable Analysis sense of approx-
imation. Thus M has an oracle tape which gives approximations of x, and an
input tape where the reciprocal of the desired accuracy is input. We will design
a Turing Machine N which takes x; y ∈ Q as input (as exact pairs of naturals);
f∗(x; y) will be the function computed by N. To obtain the condition f ¹1/α f∗

alone would be straightforward. We could define N in terms of M, by inputing
the the desired accuracy, dα(x; y)e, to the machine M, and use x as the oracle to
M. This is roughly how N will in fact be defined, but guaranteeing the modulus
condition will require some care and is the reason for complicating the definition
of N. For ease of exposition, suppose the inputs (to machine N) x, y are both of
length 1, so we write them as x and y. Let t(x; n) ∈ T W be the time bound on
machine M. First we will want to compute functions that dominate α, t ∈ T W,
and do so continuously; to approximate them directly would lead to problems
because they can take on irrational values, so that approximations would not be
continuous. Thus, we consider their values on domain N (which are in N), and
take the linearized versions of definition 5.5 and proposition 5.6. Since functions
in T W are concave down, α ≤ α̂ and t ≤ t̂. We can calculate these functions
exactly given sufficient time in T W. We also calculate τ(x; y) = t(x; 1+ α̂(x; y)).
Now we will define a function h(u1; u2;u3) on N, taking on values in Q:

Take the output of running M(u3/u2)(u1), which means that we use u3/u2 as
the oracle, and use u1 as the accuracy input. When we say to use u3/u2 as the
oracle we mean that we consider the binary expansion of u3/u2 and whenever
some accuracy is asked of the oracle, exactly enough bits of this expansion are
given.

Consider the continuous function ĥ(u1; u2; u3) obtained from h, as indicated in
definition 5.5. We define N(x; y) = ĥ(1 + α̂(x; y); τ(x; y);xτ(x; y)). It is contin-
uous because it is the result of composing continuous functions with a continu-
ous function. Furthermore this function has a 1/T W modulus because the only
functions we apply to the inputs are bounded by T W. It is left to check that it
operates as required, that is that |f(x)−N(x; y)| ≤ 1/α(x; y). By proposition 5.6,
it suffices to note that all of the 23 versions of h on Z are within 1/α(x; y) of f(x).
This is true because h runs M, and the following two points hold concerning this
run. First, M is given a sufficiently large accuracy parameter 1 + α̂, i.e. both
b1 + α̂c and d1 + α̂e are at least as big as α. Second, M uses an oracle for x

that is good enough, meaning that whenever M asks for x to some accuracy, it
gets something that is that accurate. Since the running time for M is bounded
by τ , it can ask for an x of accuracy at best 1/τ . By the the definition of h, we
picked a number as the oracle that was this close to x (i.e. bxτc/dτe is always
close enough to x, as are the 3 other combinations applying d·e or b·c; in fact we
should choose instead of τ something slightly larger).

2

We now develop some results concerning the limit operation. The following
claim is similar to corollary 2.21 from [5].

23

Campagnolo and Ojakian

Proposition 5.8 E(R) is closed under 1/IL−LIM.

Proof. The idea behind the proof is that we can start with functions that are
1/IL close, and make them close to within 1/n by composing a IL function with
a function from T W (i.e. functions from T W grow just fast enough to bring
the slow growing functions from IL up to the speed of the identity function).
Suppose f(µ; t) ∈ E(R) and let M be a machine that computes it. Suppose
F (µ) = limt→∞f(µ, t), with |F (µ) − f(µ, t)| ≤ 1/α(µ; t) for some α(µ; t) ∈ IL.
To show F is in the class, first note that by the completeness of R, the limit is in R
(i.e. this argument would break down for apxE(Q) since this class requires function
values to be in Q). We need a machine N that runs in T W time, such that for any
assignment µ → x and any oracle for µ → x, Nx(n) converges to F (µ → x) at rate
1/n.

We define a machine N as follows:

• Write down a large enough number h(x; n) so that α(x; h(x; n)) > 2n; since
α ∈ IL, there is such an h ∈ T W, so we have time to write it down.

• Approximate f(x; h(x; n)) with machine M to accuracy 1/2n.

The run time is within bounds since we can write down h, and M runs in T W time.
Consider the approximation accuracy:

|F (x)−Nx(n)| ≤ |F (x)− f(x;h(x; n))|+ |f(x; h(x; n))−M (x,h(x;n))(2n)|
≤ 1/2n + 1/2n

= 1/n

2

Proposition 5.9 If A ¹E+ B, then A(E−LIM) ¹ B(E−LIM).

Proof. We proceed inductively on the number of applications of E−LIM. For the
base case, we show A ¹ B(E−LIM). Consider f(µ) ∈ A, and we need g(µ) ∈
B(E−LIM) such that f(µ) ¹ g(µ). Take h(µ; t) ∈ B such that f(µ) ¹ε(µ;t) h(µ; t)
for some ε(µ; t) ∈ E . By definition |f(µ) − h(µ; t)| ≤ ε(µ; t). Since ε is an error
function, ε(µ; t) → 0 as t → ∞, so limt→∞h(µ; t) = f(µ). Thus we let g(µ) =
limt→∞h(µ; t) ∈ B(IL−LIM).

Now, suppose inductively that we know f(µ; t) ¹ g(µ; t), where f ∈ A(E−LIM)
and g ∈ B(E−LIM); thus f(µ; t) = g(µ; t) on the intersection of their domains. Sup-
pose ε(µ; t) ∈ E and suppose F (µ) = limt→∞f(µ; t) with F ¹ε f . We need G(µ) ∈
B(E−LIM) such that F (µ) ¹ G(µ). To obtain this, just let G(µ) = limt→∞g(µ; t),
and since f(µ; t) = g(µ; t) and F ¹ε f , we have G ¹ε g, so G ∈ B(E−LIM).

2

Lemma 5.10 Suppose F is a class of continuous functions with universe R. If
apxE(Q) ≈1/IL

+ F then E(R) = F(1/IL−LIM).

Proof. We prove both inclusions.

⊆ We start with apxE(Q) ¹1/IL
+ F . We want to show that E(R) ¹1/IL

+ apxE(Q),
so for f(x) ∈ E(R), and α(x; y) ∈ IL we need h(x; y) ∈ apxE(Q) such that
f ¹1/α

+ h. We start with a machine M for f and basically re-use the machine

24

Campagnolo and Ojakian

N from the proof of lemma 5.7. A difference is that rather than having x and
y exactly, now N queries for an appropriate accuracy, and then runs using these
answers. Note that h is automatically continuous, but what is required now is
that there is some accuracy input, say r, and N must get within 1/r of the correct
output. This is taken care of by the fact that the machine N we borrowed from
the other lemma had a 1/T W modulus, meaning that by taking inputs for x; y
close enough, we get as close as we like to the desired output.

By transitivity, E(R) ¹1/IL
+ F ; in fact transitivity only gives this for values

in Q, due to the intermediary class apxE(Q), but since F consists of continuous
functions we obtain the approximation for all of R. By proposition 5.9 we obtain:
E(R)(1/IL−LIM) ¹ F(1/IL−LIM). By proposition 5.8 we change the left side
in the previous line to finish this inclusion: E(R) ¹ F(1/IL−LIM).

⊇ We start with F ¹1/IL
+ apxE(Q). Since F contains only continuous functions,

we obtain F ¹1/IL
+ E(R). In a manner similar to the previous inclusion, we apply

propositions 5.9 and 5.8 to complete this inclusion.
2

Thus our ultimate goal now is to show that apxE(Q) ≈1/IL
+ L, and then the

theorem follows by lemma 5.10.
The next step will be to introduce a function algebra on Q which will yield the

same functions as disE(Q). It is defined by simply adding D to the basic functions
of FAQ(ctn) (we indicate this addition to the basic functions by placing D after the
existing basic functions with a comma separating them):

FA[basicQ, D; comp, line
∑

, line
∏

].

This function algebra contains discontinuous functions, and so we name it as follows.

Definition 5.11 The function algebra FA[basicQ,D; comp, line
∑

, line
∏

] will be ab-
breviated by FAQ(disctn).

The following simple proposition is surprisingly useful. It says, in words, that
any elementary computable function on N has an extension in FAQ(ctn). Thus we
can be quite flexible in coming up with functions in this rational class as long as we
do not care how it operates off of N; in fact, we will also reference this lemma for
functions on Z, since in FAQ(ctn) we can code an integer easily as a natural, perform
the function in N, and convert back to Z. Note that it is not possible to code Q
into N within FAQ(ctn) (i.e. λ 6∈ FAQ(ctn)), since this would require a discontinuous
function (the discontinuous class FAQ(disctn) can do this).

Proposition 5.12 FAN ¹ FAQ(ctn)

Proof. Immediate from lemma 3.10, since we can approximate the basic functions,
composition, sum and product. For the basic functions, note that that we can
obtain cut-off subtraction by: x . y = sgn(x − y)(x − y). The others are easier to
deal with.

2

25

Campagnolo and Ojakian

We will sometimes quote proposition 5.12 with FAQ(disctn) in place of FAQ(ctn).

Lemma 5.13 disE(Q) = FAQ(disctn).

Proof. We show 2 inclusions. For both, we use the following well-known charac-
terization of elementary time:

(?) E(N) = FAN

• (⊆) Immediately from the definitions we obtain disE(Q) ¹λ E(N). By ?, we have
E(N) ¹ FAN. By proposition 5.12 we have FAN ¹ FAQ(disctn). By transitivity,
we have disE(Q) ¹λ FAQ(disctn). Using D and N, we can put λ and λ−1 in
FAQ(disctn), and thus we obtain disE(Q) ¹ FAQ(disctn), because for any f(x) ∈
disE(Q), we have fλ ∈ FAQ(disctn) such that f(x) = λ−1 ◦ fλ(λ(x)), and λ−1 ◦
fλ(λ(x)) ∈ FAQ(disctn), by closure under composition.

• (⊇) We can strengthen corollary 4.12 to FAQ(disctn) ¹λ FAN, simply by not-
ing that D ¹λ FAN. By ?, FAN ¹ E(N). Immediate from the definitions we
have E(N) ¹ disE(Q). By transitivity, FAQ(disctn) ¹λ disE(Q). We have
λ, λ−1 ∈ disE(Q), so by the same reasoning as in the previous inclusion we
have FAQ(disctn) ¹ disE(Q).

2

We will connect FAQ(ctn) and FAQ(disctn)via modulus functions in lemma 5.18.
We first develop a number of ideas used in that proof. The following is proved
inductively on the function algebra.

Proposition 5.14 FAQ(ctn) has a 1/T W modulus.

The next important technical lemma relates to the syntactic structure of the
function algebra (i.e. the construction trees, recall definition 3.5) and is sensitive
to the exact definition of the function algebra (i.e. other function algebras which
yield the same functions in the end, might have the wrong syntactic property).

Lemma 5.15 For every f(x) ∈ FAQ(disctn), there is a construction tree for f in
which D is only applied to variables.

Proof. It suffices to show we can push D into any of the basic functions and past any
of the operations. By proposition 5.12, we can easily extend a number of functions
from N to functions in FAQ(ctn), only caring how these functions behave on N. In
particular we have extensions of the gcd function, and a division function b·/·c which
defines x/0 = 0. Also recall the functions δ and sgn in FAQ(ctn) (definition 4.8).
We have N, because N(x) = |x|D(x) (the absolute value is in FAQ(ctn)). A more
significant function is the full, discontinuous “sign function” on Q (as opposed to the

continuous function sgn), sign(x) =

0, if x ≤ 0;

1, if x > 0.
We can define this in FAQ(disctn)

in such a way that D is only applied to variables, as follows: sign(x) = sgn(θ1(D(x))).
We show how to push past the basic functions:

(i) D(θ1(x)) = θ1(D(x))

26

Campagnolo and Ojakian

(ii) D(div(x)) =

x, if x ≥ 1;

1, if x < 1.
= 1 + θ1(x− 1)

(iii)

D(xy) =
⌊

D(x)D(y)
gcd(D(x)D(y), N(x)N(y))

⌋

We can check this by letting x = p/q and y = a/b and checking the equation:
D((p/q)(a/b)) = D(pa/bq) = bq/gcd(bq, pa). Furthermore, the equation works
for either x or y equals 0 (recall the definition of b·/·c mentioned above), and
the sign matches (i.e. the sign of D(xy) is the same as the sign of D(x)D(y)
and we will assume that gcd is defined so that it is always non-negative).

(iv) For + we have cases on whether or not x or y is 0, and use a function s(x; y),
built up from sign, to make the sign correct:

D(x + y) =

⌊
s(x;y)D(x)D(y)

gcd(D(x)D(y),N(x)D(y)+N(y)D(x))

⌋
, if x, y 6= 0;

D(x), if y = 0;

D(y), if x = 0.

Note that branching on the 3 cases can be carried out with sign (in fact even
sgn could be employed using the fact that D(x) = 0 ⇐⇒ x = 0).

Now consider how we can push into the operation line
∏

. Recalling the definition,
we have D(line

∏z
y=0 f(y;x)) = D((1+bzc−z)

∏bzc
y=0 f(y; x)+(z−bzc) ∏dze

y=0 f(y; x)).
In FAQ(disctn), the products up to bzc and dze can both be written as legitimate
function on their own (this is not the case of FAQ(ctn)). We can push D into
multiplication, addition, and b·c (the latter uses reasoning similar to the above
functions), so we are just left with the product operation itself. Note that

D(
bzc∏

y=0

f(y; x)) =

∏bzc
y=0 D(f(y; x))

gcd(
∏bzc

y=0 D(f(y; x)),
∏bzc

y=0 N(f(y; x)))
.

The case for summation is similar to products.
2

Another important step will be to consider two kinds of variables in functions,
those whose values have an effect on the function value (dependent) and those that
don’t (independent). For example (1 − 1)x + y has x as independent and y as
dependent.

Definition 5.16 Suppose f(x; y) is a function with all its variables displayed. We
say that x are independent relative to f if for any assignment to the variables y

in the universe of f , the value of f is fixed (i.e. all assignments to x in the universe
give the same value once y is fixed).

As defined, it is different to say that each of the variables of x are independent,
versus saying that the entire set x is independent. However, due to the following
proposition, we need not worry about this distinction.

27

Campagnolo and Ojakian

Proposition 5.17 If both x and y are independent relative to f(x; y; z), then x∪ y

are independent relative to f(x; y; z).

Lemma 5.18 FAQ(ctn) = {f ∈ FAQ(disctn) | f has 1/ T W modulus}
Proof. We prove the two inclusions.

⊆: Immediate by lemma 5.14.
⊇: Let f(x) ∈ FAQ(disctn), with all its variables displayed. We now show that

either f is discontinuous (so need not be considered) or continuous and in FAQ(ctn).
We assume that all the variables of f are dependent (i.e. not independent), since
for the independent variables, we can do the following: Fix them in any manner,
and then consider where in the construction tree of f they are used; these parts
are simply fixed rationals that do not need D. Also, by lemma 5.15, we assume
that D is only applied to variables, so we only need to consider the following two
cases, depending on whether or not D is applied to one of the the variables in
x = x1, . . . , xk.

(i) Some variables of x have D applied to them: In this case we show f is discon-
tinuous. We will use a technical claim.
Claim ∀x ∈ Q ∀ε > 0 ∃m ∈ N ∀q ≥ m (q prime) ∃z ∈ (x−ε, x+ε) |D(z)| = q.

The proof of the claim is as follows:
Choose m such that 1/m < ε. Then for any q ≥ m there is p ∈ Z such that
|p/q − x| ≤ 1/q < ε. For q prime, |D(p/q)| = q.

We continue with this case. Assume variable x1 has D applied to it, so we
can write f as g(D(x1);x2; . . . ; xk), for some function g. Now we obtain
that for some way of fixing x2, . . . , xk, g(D(x1);x2; . . . ; xk) is discontinuous
in x1. To show this assume otherwise. Since variable x1 is dependent, there
is some way of fixing x2, . . . , xk, so that we have v1 < v2 ∈ Q satisfying
g(D(v1);x2; . . . ;xk) 6= g(D(v2);x2; . . . ;xk); from now on we leave off x2, . . . , xk

for ease of readability. By the assumption of continuity, we can find u1 6= u2

such that g(D(u1)) 6= g(D(u2)), and such that u1 and u2 are either both positive
or both negative. By the assumption of continuity, g(D(u)) is continuous at u1

and u2. To be continuous at u1 means that nearby rationals are mapped close to
g(D(u1)). By the above claim we can pick nearby rationals with prime denom-
inators in order to obtain that for primes p, as p →∞, either g(p) → g(D(u1))
or g(−p) → g(D(u1)); the sign depends on whether u1 is positive or negative
(recall that the denominator function carries the sign with it). Continuity at
u2 requires the same kind of convergence to g(D(u2)) (note that the sign of
u2 is the same as u1 so the primes in the converging sequence really have the
same sign), which is impossible since g(D(u1)) 6= g(D(u2)).

(ii) Otherwise: In this case we show f is in FAQ(ctn).
For this case, all occurrences of D must have their variables bound by a sum

or product. Sums or products only range over natural numbers, so we can deal
with them easily. For all x ∈ N, D(x) = 1, except for D(0) = 0. Thus we
simply replace occurrences of D(x) by δ(x). Therefore f is in FAQ(ctn).

2

The following is a main corollary of the previous development.

28

Campagnolo and Ojakian

Corollary 5.19 apxE(Q) ≈1/T W
+ FAQ(ctn)

Proof. By proposition 5.7, apxE(Q) is equal to disE(Q), restricted to 1/T W−modulus
functions. By lemma 5.13, we can replace disE(Q) by FAQ(disctn). Then we apply
lemma 5.18 to get the result.

2

We return to the promised missing proof of lemma 4.18:

lineLR ¹ OP[basicQ; comp; line
∑

, line
∏

].

Proof. We lift the result from the naturals to the rationals and then use the rela-
tionship between the continuous and discontinuous versions. First we can easily lift
the result on the naturals to the discontinuous class of functions on the rationals,
that is, we have:

(?) FA[basicQ, D; comp, lineLR] = FAQ(disctn).

The left side of ?, restricted to 1/T W−modulus is FA[basicQ; comp, lineLR], by
a similar argument to that in lemma 5.18. The right side of ?, restricted to
1/T W−modulus functions is FAQ(ctn), by exactly lemma 5.18. The missing techni-
cal detail is to extend lemma 5.15 so that D can be pushed past the lineLR operation,
and then note that lemma 5.18 works the same with lineLR because it recurses on
natural numbers, as do

∑
and

∏
. Thus, FA[basicQ; comp, lineLR] = FAQ(ctn),

yielding our result.
2

Now we want to show that the real class is strong enough to approximate the
rational one. We can show that a number of useful functions are this class (most of
the following is shown in [3]).

Proposition 5.20 ([3]) L contains: ∗, +, sin, cos (on R).

Lemma 5.21 basicQ ¹1/T W
+ L

Proof. Except for θ1 and div, every function in basicQ has an extension of it in
basicR and thus is approximated exactly. For θ1 we use LI to approximate it by
defining a function φ(x) with slope 0 up to 0− ε and slope 1 after 0 + ε; we switch
in a smooth manner between these slopes and make ε as small as required with an
argument similar to the switching carried out below in the proof of lemma 5.22. For
div we use the fact that 1/x can be approximated (for x ≥ 1) because 1−e−tx

x ∈ L
(observed in [1]) and we can take t large. For the non-differentiable place, at x = 1,
we again switch smoothly between the different slopes.

2

Lemma 5.22 line
∏ ¹1/T W

+ OP[basicR; comp; LI]

Proof. Assuming we can approximate f(x) (we leave out other variables for ease
of exposition), we need to show that we can approximate g(y) = line

∏z
x=0 f(x).

Recall that using techniques based on continuous time “clocks”, in [3], with LI, they
define a pair of simulating functions y1(τ, t) and y2(τ, t) such that for all n ∈ N,

29

Campagnolo and Ojakian

|y1(n, n)− g(n)| ≤ exp(−β(n))2n(n + 1)βn+1(n), where β is some function in L. It
is clear that by choosing a faster growing β in the class, the error |y1(n, n)− g(n)|
can be made as small as any demanded accuracy in 1/T W.

We will define a function close to g with the differential equation z′(t) = s(t),
where s(t) will give the approximate slope of g, i.e. for x ∈ [n, n + 1], we want s(x)
to be approximately g(n + 1)− g(n). Using the construction in [3] (lemma 4.7), we
can – adjusting the initial conditions for the linear differential equations – define
two copies of the simulation functions (y1, y2), we denote by (y3, y4) and (y5, y6),
such that y5(t) = y3(t + 1) = y1(t + 2) and y6(t) = y4(t + 1) = y2(t + 2). 3 Hence,
Y1 = y6(t)− y4(t) is constant and approximates g(n + 1)− g(n) when t ∈ [n, n + 1

2]
and Y2 = y3(t) − y1(t) is also constant and approximates g(n + 1) − g(n) when
t ∈ [n + 1

2 , n + 1].
The idea is to define s such that s(t) switches (in a continuous and even Ck

manner) from Y1 on [n, n + 1
2] to Y2 on [n + 1

2 , n + 1] for all n ∈ N. This can be
done simply by defining s(t) = c(t)Y1(t) − (1 − c(t))Y2(t) where c(t) is a function
in the class that alternates between 1 and 0. More precisely, one can define with
sin and θk a function c such that c(t) = σ(M(t)θk(sin 2πt)), where σ in the class is
an increasing step function satisfying σ(t) = 0 for t < 0 and σ(t) = 1 for t > 1 (its
behavior in between is not important since we can choose M large enough to account
for it). Therefore, c(t) grows from 0 to 1 on [n, n + ε] for some ε that depends on
M . Then, c(t) is 1 on [n + ε, n + 1

2 − ε], decreases back to 0 on [n + 1
2 − ε, n + 1

2]
and c(t) = 0 on [n + 1

2 , n + 1]. Adjusting M , we can make ε as small as we want.
From the smoothness of Y1 and Y2, one can guarantee that s(t) is going to quickly

and smoothly alternate from Y1 and Y2 and that z is going to be an approximation
of g, which can be made as tight as required within 1/T W, because we can choose
β and M in T W (since the class dominates T W since it can exponentiate and is
closed under composition).

2

The following lemma again uses a clock argument, as in the previous proof.

Lemma 5.23 line
∑ ¹1/T W

+ OP[basicR; comp; LI]

Thus, the following corollary follows by using lemma 3.10 and the above ap-
proximations following the form of the proof in corollary 4.24 (notice that we use
lemma 3.13 again).

Corollary 5.24 FAQ(ctn) ¹1/T W
+ L

By putting together previous claims using transitivity , we have a goal we set out
for.

Corollary 5.25 apxE(Q) ≈1/T W
+ L

Proof. By corollary 5.24 and corollary 5.19 we have: apxE(Q) ¹1/T W
+ L. From

lemma 4.24 and corollary 5.19 we have: L ¹1/T W
+ apxE(Q). Thus we have the

claim.
2

3 To simplify the notation, we drop the argument τ from yi.

30

Campagnolo and Ojakian

By lemma 5.10 and corollary 5.25 we have the theorem.

Theorem 5.26 E(R) = L(1/IL−LIM)

Note that corollary 5.25 is stronger than what is needed, but it is more natural to
prove this strengthening. Using it and previous lemmas we could in fact show:

E(R) = L(1/IL−LIM) = L(1/T W−LIM).

6 Conclusion

We have introduced two techniques, lifting and the method of approximation, and
have applied them to obtain two theorems. An informal claim of this work is that
these techniques are general and should be applicable to other complexity classes
and results. This claim is supported by other work in progress (which is perhaps
not so convincing to the reader) and by the character of many of the claims which
did not depend on the fact that we were working with the elementary computable
functions in this paper. So of course further work is to apply these techniques
more broadly. In particular we have work in progress relating to the class #P .
Furthermore it seems that it should be relatively straightforward to apply these
techniques to the classes stronger than the elementary computable functions, in
particular, to the Grzegorczyk hierarchy up to the primitive recursive functions and
recursive functions (such connections have been made in terms of discrete part in
[3], and in terms of Computable Analysis in [1] and [2]). More ambitious goals
include results of this kind for the weaker complexity classes such as the polynomial
time functions.

7 Acknowledgements

This work was partially supported by Fundação para a Ciência e a Tecnologia and
EU FEDER POCTI/POCI, namely, via CLC, project ConTComp POCTI / MAT
/ 45978 / 2002, and grant SFRH / BPD / 16936 / 2004.

References

[1] Bournez, O. and E. Hainry, Elementarily computable functions over the real numbers and R-sub-recursive
functions, Theoretical Computer Science 348 (2005), pp. 130–147.

[2] Bournez, O. and E. Hainry, Recursive analysis characterized as a class of real recursive functions (2006),
to appear.

[3] Campagnolo, M. L., C. Moore and J. F. Costa, An analog characterization of the Grzegorczyk hierarchy,
Journal of Complexity 18 (2002), pp. 977–100.

[4] Grzegorczyk, A., Computable functionals, Fund. Math. 42 (1955), pp. 168–202.

[5] Ko, K.-I., “Complexity Theory of Real Functions,” Birkhaüser, 1991.

[6] Moore, C., Recursion theory on the reals and continuous-time computation, Theoretical Computer
Science 162 (1996), pp. 23–44.

31

