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Abstract

We determine the cop number of the hypercube for different versions of the
game Cops and Robber. Cops and Robber is a two player game played on an
undirected graph. One player controls some number of cops; the other player
controls a single robber. In the standard game, the cops first choose some
vertices to occupy, then the robber chooses a vertex; the players then alternate
turns. On a turn, the robber may stay still or move to an adjacent vertex,
likewise for the cops. The cop number of a graph is the least number of cops
needed to guarantee the robber will be caught. The n-dimensional hypercube
(or n-cube) is the graph whose vertices are the length n binary vectors with
an edge between vectors that differ at exactly one coordinate. Various authors
have investigated the cop number of the n-cube for a few versions of the game.
We extend the game rules by considering cops of varying capacities. We refer
to a cop who must move as an active cop, and cops who may move or stay still
as flexible cops. Three versions of the game have been considered: 1) All cops
are flexible, 2) All cops are active, and 3) At least one cop is active. In addition
to the active and flexible cops, we introduce a third kind of cop, a passive cop,
which must remain still on a turn. By varying the number of flexible, active,
and passive cops we consider a whole spectrum of games. We fully classify the
tradeoff between active and flexible cops. Introducing passive cops dramatically
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increases the difficulty and interest of the problem. The most involved proof
of the paper achieves only a partial result for the game involving passive cops,
and suggests a number of open questions. Finally, we connect Cops and Robber
to another vertex pursuit game, Graph Searching, and use this relationship to
provide a new lower bound for the cop number of the Graph Searching game.

1 Introduction

The game of Cops and Robber was introduced independently by Quilliot [22] and
Nowakowski and Winkler [20]. It is a two-player game played on an undirected,
loopless, finite graph. One player controls some number of cops and the second
player controls a single robber. The standard game begins with the cops choosing
some vertices (multiple cops may occupy a single vertex), followed by the robber
choosing a vertex. It is the cops’ turn first and then play alternates between the two
players. On the cops’ turn any number of the cops may remain stationary, while each
of the other cops moves to an adjacent vertex. On the robber’s turn, he may remain
stationary or move to an adjacent vertex. The cops win if any one of them “catches”
the robber, that is if the cop and the robber ever occupy the same vertex. The cop
number of a graph, introduced by Aigner and Fromme [1], is the minimum number
of cops required to catch the robber on that graph. Most research on the Cops and
Robber game has focused on determining the value of the cop number.

Besides providing interesting mathematical questions, the game of Cops and Rob-
ber has a number of motivating applications. Many search problems on a network can
be formulated as some variant of a Cops and Robber game; for example, searching
for a lost person in a network of caves or searching for a virus in a computer network.
The cop number of a graph can be thought of as a measure of the ease of searching the
graph. For further details on the game see the surveys by Hahn [13] and by Bonato
and Nowakowski [9].

The most famous open question related to Cops and Robber is Meyniel’s conjec-
ture, made public in a 1987 paper by Frankl [11]. The conjecture states that the cop
number of a graph is upper bounded by O(

√
n), where n is the number of vertices in

the graph. Though there has been recent progress due to Scott and Sudakov [23] and
Lu and Peng [15], the conjecture is still very open. While Meyniel’s conjecture con-
cerns the best possible bound for the cop number on general graphs, it is possible to
do better on particular classes of graphs, and there are many results in this direction.
For example, researchers have studied the cop number of planar graphs [1], random
graphs [8, 16, 18, 21], product graphs [25, 19], geometric graphs [6], grid graphs [7],
and many other types of graphs [4, 5, 11, 14].

In this paper, we study Cops and Robber on the hypercube, investigating how
the cop number varies as the rules of the game are changed. The n-dimensional
hypercube, denoted Qn, is the graph whose vertices are the length n binary vectors,
with an edge between every pair of vertices that differ in exactly one coordinate.
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The game of Cops and Robber on the hypercube was first studied by Maamoun and
Meyniel [17] (where the hypercube is a special case of the Cartesian Product of trees)
and later by other researchers [7, 19, 10]. We were surprised (at first) to see that each
of these papers claimed different values for the cop number of Qn. The different cop
numbers are explained by the variations in the rules of the game concerning which
cops can move on a turn and whether the robber must move on each turn. For the
standard version of the game, Maamoun and Meyniel [17] proved the cop number of
Qn is dn+1

2
e. In [7] the cops are not allowed to choose their own starting positions,

and in this case the cop number for Qn is n, by Theorem 1 and Theorem 2 when
their result is specialized from the case of the n-grid to the n-cube. In [19], where
the robber must move on each turn, by Theorem 2.4, the cop number of Qn is dn

2
e.

We introduce the following terminology to describe these and other variations. When
it is the cops’ turn, each cop may be in one of the three states, active, passive,
or flexible, meaning respectively that she must move, must remain still, or has the
option of moving or staying still. We may also designate the robber as active, passive,
or flexible, though we will always consider an active robber, as explained in Section 2.
Ignoring passive cops at first, in Sections 3 and 4 we fully classify the tradeoff between
active and flexible cops, showing that having all flexible cops is the best case, with cop
number dn/2e, the worst case is having all active cops, with cop number d2n/3e, and
every cop number between dn/2e and d2n/3e can be achieved with an appropriate
mixture of active and flexible cops. We obtain results from [7] and [19] as special
cases of our Corollary 3.3.

In Section 5, we consider the game in which some fixed number of cops (say k of
them) must move when it is the cops’ turn (i.e. be active), and the rest must remain
stationary (i.e. be passive); call the corresponding cop number Cka(n). We find that
C(dn

2
e−1)a(n) = dn

2
e. This is surprising, since it means that on Qn a single passive

cop along with dn
2
e − 1 active cops is as capable as dn

2
e flexible cops. However, as

k decreases, Cka(n) appears to increase rapidly, and in fact in Theorem 5.5 we show
for sufficiently large n C1a(n) > 2b

√
n/20c, while in Theorem 5.4 we show C1a(n) ≤

O

(
2n lnn

n3/2

)
. The lower bound is determined using a complicated strategy for the

robber, which is unusual in the literature since most of the work on Cops and Robber
deals with upper bounds, and thus cop strategies (an exception is the robber strategy
given by Frankl in [11]). Despite the most involved work of the paper going into those
bounds, they are far from tight, and leave open the question of the values of Cka(n)
for other values of k.

Introducing passive cops dramatically complicates the game, while also making an
interesting connection between Cops and Robber, and another vertex-pursuit game
called Graph Searching. These two games are almost disjoint areas of research (see
the survey by Alspach [3] for background on Graph Searching). In Graph Searching,
the robber is invisible to the cops and can make an arbitrary number of moves on a
single turn. The “cop numbers” in the Graph Searching game are often large; in fact,
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for Qn, Tosic [24] obtains an upper bound of 2n−1 + 1. In Section 5 we show that
cop numbers from C(dn

2
e−1)a(n) up to C1a(n) provide a chain that begins with values

typical of the game of Cops and Robber, and ends up with values typical of Graph
Searching. In Section 6 we show, in Lemma 6.1, that C1a(n) is a lower bound on the
Graph Searching cop number. We are hopeful that our work is a first step toward
bridging a gap between two areas in which there is “a vast gap” (Alspach [3], p. 12).

2 Notation and framework

We now define a framework which will allow us to unify different versions of Cops
and Robber in a consistent manner, and generalize previous results. Throughout
we will assume that all graphs are connected and the robber is active, except for
some comments at the end of this section where we discuss why the case of a flexible
robber is not so different. By a police force (or just a force for short), we mean a
collection of cops specified by the tuple (a1A + p1P + f1F + a2a + p2p + f2f), where
a1, p1, f1, a2, p2, f2 ≥ 0 are integers, and A,P,F, a,p, and f are special symbols. This
tuple refers to the following collection of cops:

• There are m = a2 + p2 + f2 cops such that every time it is the cops’ turn, they
choose exactly a2 of these m cops to move, exactly p2 of these m to remain still,
and exactly f2 of these m cops which can move or stay still.

• There are exactly a1 cops that must be active throughout the game (we call
these cops fixed active cops).

• There are exactly p1 cops that must be passive throughout the game–they may
never move.

• There are exactly f1 cops that are flexible throughout the game (we call these
cops fixed flexible cops).

If one of the 6 parameters is not specified, it is assumed to be zero. If a police force F
is sufficient to catch a robber on a graph G, we denote this by F −→ G. For example,
if G is a path, then (1F) −→ G, or if Cl is a cycle of length l, then (1a + 1p) −→ Cl.
Since the game is monotonic in the sense that adding cops of any type never hurts
the cops, we will be interested in the minimal forces sufficient to catch the robber on
a given graph. To denote such a minimal force, we use a squiggly arrow to indicate
that the force is sufficient, but removing any cop would give the robber a winning
strategy. For instance, (1a+ 1p) C6 and (2f) C6. Finally, we use an arrow with
a strike through it to denote a force that is insufficient to guarantee a cop victory, for
example (1A) 6−→ C4. We can express existing results (basically from [19]) in this
notation. For n ≥ 3:

1. (dn/2ef) Qn
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2. (1a + (dn/2e − 1)f) Qn

A natural way to expand upon these results is to require more active cops. Using
this notation, we determine the exact tradeoff between active and flexible cops in
Section 4.

Unless otherwise stated, we will assume the robber is active; this assumption
simplifies our work, while having little effect on the cop number. Using the idea of
a “chaser” (used at various places in the literature, such as Lemma 1.1 of [19]) we
observe the following.

Lemma 2.1 Suppose F is a force and G a graph, such that F −→ G. Then the
following forces suffice to catch a flexible robber on G: (F + 1A), (F + 1a), (F +
1F), (F + 1f).

Proof. We are supposing F −→ G, meaning that there is a multi-set of vertices, P ,
from which F has a strategy to catch an active robber, no matter where that robber
starts. It suffices to describe a strategy for F + 1A to catch a flexible robber. The
cops of F begin at vertices P and the extra active cop, who we will call the “chaser,”
starts anywhere. On a turn, the chaser simply chooses any move that brings her
closer to the robber. The cops of F can be “in retreat” or “on the attack.” If the
robber stays still on a turn then F goes into retreat, meaning they begin to return
to the original placement P , ignoring the robber until they are back at P . F can
do this by simply reversing their moves. If F is at P and the robber moves, then F
plays its usual strategy for an active robber. Since F has a strategy starting at P ,
irrespective of where the robber is situated, F can carry out its strategy every time a
retreat brings them back to P . F continues playing this strategy as long as the robber
continues to move; we say F is on the attack. Notice that when F is on the attack,
they are on track to catch the robber as long as they are given enough consecutive
moves in which the robber is active. The robber can only stay still a fixed number of
times without being caught by the chaser. Thus assuming the chaser does not catch
the robber, F will only go into retreat a fixed number of times, so eventually F will
be on the attack long enough to catch the robber. �

Remark. In the previous proof, if all of the cops in F are flexible, they could
just stay still for a turn whenever the robber did not move, rather than going into
retreat. However forces with active cops do not have this option.

If F 6−→ G, then F is not sufficient to catch a flexible robber. Showing F  G, a
sharp result for an active robber, almost obtains a sharp result in the flexible case–it
means that F with any cop removed does not suffice to catch the flexible robber,
while adding an active or flexible cop does suffice. These general comments leave
open the question of whether F suffices to catch a flexible robber; the answer to this
question will vary depending on the graph under consideration. Since the case of the
active robber gets us so close to the case of the flexible robber, we will only consider
the case of an active robber for the remainder of this paper.
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3 Parity and the hypercube

In this section we consider what happens when the game begins in some arbitrary
position, rather than beginning the game in the standard way, with the cops, then
the robber choosing vertices to occupy. This section is of independent interest, but
is also used in Section 4 when we return to the standard way of beginning the game.
We obtain some results of [7] as a special case, discussed at the end of the section.

It will be useful in this section and throughout the paper to keep in mind some
properties and terminology related to the hypercube. The hypercube is vertex-
transitive, meaning that given any two vertices v, w ∈ V (Qn) there is a graph au-
tomorphism on Qn that maps v to w; in practice we will use this fact to assume,
without loss of generality, that whatever vertex is under consideration is in fact the
vertex (00 . . . 0). When a cop or robber moves from one vertex to another in Qn, the
corresponding vectors differ in exactly one coordinate, and we refer to the move as
flipping that coordinate from 0 to 1 or from 1 to 0.

By a position we mean some placement of the cops and the robber on the vertices
of the hypercube so that the robber does not occupy the same vertex as a cop. A
position is a winning position if from that position the cops can force a win (we
assume it is the robber’s turn). In this section we provide a full classification of the
winning positions involving active and flexible cops.

The parity of the distance from a cop to the robber is a key property which will
be exploited in this section and throughout the paper. We say that a cop is an even
cop if her distance to the robber is of even parity, and a cop is an odd cop if this
parity is odd; we measure the parity right before the robber moves. Note that if a
cop is fixed active, her parity will be the same throughout the game.

Theorem 3.1 A position on Qn with d odd fixed active cops and e even fixed active
cops is a winning position if and only if 2e+ d ≥ n.

Proof. We say a cop covers a vertex v if the cop occupies v or can move to v on
her next turn. The robber is only forced to lose on the next cop turn if all of his
neighbors are covered by cops. We show that it is possible for the cops to do this if
and only if 2e+ d ≥ n.

Suppose 2e + d < n. A cop at distance 1 from the robber covers one of the
robber’s neighbors, a cop at distance 2 from the robber covers two of the robber’s
neighbors, and a cop at distance 3 or greater from the robber covers none of the
robber’s neighbors. Therefore on the robber’s turn, even cops cover at most two
neighbors and odd cops cover at most one, so a total of at most 2e + d < n of the
robber’s neighbors are covered. Since the robber has n neighbors, he can move to an
uncovered neighbor and will not be caught.

Conversely, suppose 2e + d ≥ n. We describe a winning strategy for the cops.
Each vertex of Qn is a vector of length n. We will refer to the n coordinates of
the vector as coordinates 1, 2, . . . , n. Each cop will have some coordinate between 1
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and n as her “home.” Let the d odd cops have their homes at coordinates 1, . . . , d,
respectively, and the e even cops have their homes at coordinates d+2, d+4, . . . , d+2e,
respectively. We adopt the convention throughout the proof that if we refer to any
coordinate N > n that we interpret this as the coordinate k so that k ≡ N (mod n).
Since 2e+ d ≥ n, the homes at least reach coordinate n. From each cop’s home, say
coordinate k, she regards the coordinates k + 1, k + 2, . . . , n, 1, 2, . . . k − 1, in that
order, as being to the right of k. Notice the convention that we wrap around, so the
coordinate k− 1 is the rightmost coordinate, or in other words, directly to the left of
home.

Each cop follows the same strategy relative to her home. Define the reach of the
cop with home at coordinate k to be the number of consecutive coordinates on which
the cop’s vector matches the robber’s, starting at coordinate k and going right. When
it is the cops’ turn, each cop simply flips the coordinate which makes her reach as
large as possible. For example, suppose n = 6 and the robber is at vertex (000000).
Suppose a cop is at vertex (010010) and her home is coordinate 3. Then this cop’s
reach is currently 2, and if it were her turn, she would flip coordinate 5 to make her
reach 5.

This strategy eventually catches the robber. We say that a cop has a critical
reach if her reach is n− 2 for an even cop, or her reach is n− 1 for an odd cop; reach
is always measured right before the robber moves. An even cop with critical reach
has two coordinates that differ from the robber’s; if the robber flips one of these two
coordinates on his turn, then the cop flips the other on her turn to catch him. An odd
cop with critical reach has one coordinate that differs from the robber’s; if the robber
flips that one, he has landed on the cop and is caught. Thus, when a cop has critical
reach, we say that the coordinate to the left of her home (or the two coordinates to
the left of her home, in the case of an even cop) are closed to the robber and assume
that the robber never flips such a coordinate.

We show the strategy works, by showing that 1) Eventually all the cops have
critical reach, or 2) The robber gets caught before (1) happens. To show this, it
suffices to show that whatever the robber does, every cop’s reach can at least be
maintained, and some cop without a critical reach can have her reach extended.
Suppose the robber flips coordinate k. Because of the positioning of the cop homes
and the fact that the cop homes extend out to at least coordinate n, at least one
of the coordinates, k + 1 or k + 2, is the home of some cop. If coordinate k + 1 is
the home of a cop, then since coordinate k was not yet closed to the robber, that
means the cop with home k + 1 did not yet have critical reach, but her reach can be
extended. If coordinate k + 1 is home to no cop, but k + 2 is the home of a cop (in
this case, it must be an even cop), then since coordinate k was not yet closed to the
robber, that means the cop with home k + 2 did not yet have critical reach, so her
reach can be extended. In both cases, all other cops can at least maintain their reach
just by flipping the same coordinate as the robber. �

Remark. We note that the cop strategy used in the backwards direction of the
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last proof is similar to cop strategies used in [7, 10, 17, 19].

Corollary 3.2 A position on Qn with d odd fixed active cops, e even fixed active
cops, and f flexible cops is a winning position if and only if 2(e+ f) + d ≥ n.

Proof. The forward direction follows from the forward direction of Theorem 3.1,
since the best case for the flexible cops is to be even. For the backward direction,
the flexible cops with odd parity can simply not move for a turn to obtain an even
parity. Once the flexible cops are all even, the cops have a winning strategy due to
the backwards direction of Theorem 3.1. �

Corollary 3.2 provides a full classification of the winning positions for combinations
of active and flexible cops in terms of an easily checkable arithmetic condition. Using
the notion of an “optimal position” we can derive an interesting result from the
corollary. By an optimal position we mean a winning position that is no longer a
winning position if any cop is removed. Using this terminology, Theorems 1 and 2
in [7] state that the maximum optimal positions are exactly those with n odd cops.
Their result is immediate from Corollary 3.2, by setting e = f = 0. We can go
further, fully classifying the optimal positions in the following corollary; the size of
a position is the number of cops it contains.

Corollary 3.3 The possible sizes of optimal positions range from dn/2e to n (inclu-
sive). Furthermore, for any k such that dn/2e < k ≤ n the collection of optimal
positions of size k are exactly the positions with 2k−n fixed active odd cops and n−k
other cops, each of which is even or flexible. If k = dn/2e and n is even, the optimal
positions of size k are exactly those with n/2 cops, each of which is even or flexible.
If k = dn/2e and n is odd, the optimal positions of size k are of two kinds: 1) Those
with dn/2e cops, each of which is even or flexible, and 2) Those with one odd active
cop along with (n− 1)/2 cops, each of which is even or flexible.

4 Active and flexible cops

In this section we return to the standard method of starting the game, in which the
cops place themselves, then the robber places himself. In Theorem 4.1 we give an
arithmetic criterion that fully characterizes which forces with active and flexible cops
can catch the robber. In Corollary 4.2 we determine the possible sizes of minimal
winning forces.

In the arithmetic condition of Theorem 4.1, the coefficients 2 and 3/2 in can be
interpreted in terms of the power of individual flexible and fixed active cops. Recall
that in order for the cops to have a winning strategy on Qn, they must be able to cover
all of a robber’s n neighbors. Since flexible cops can always become even, they can
always move to a position to cover 2 of the robber’s neighbors. Half of the fixed active
cops can be forced to be odd (and thus cover at most 1 of the robber’s neighbors)
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and the rest will be even, so the fixed active cops can each cover an average of 3/2
neighbors of the robber.

Theorem 4.1 For all n, (a1A + f1F + a2a + f2f) −→ Qn if and only if either:

1. f2 = 0 and 2f1 + b(3/2) · (a1 + a2)c ≥ n, or

2. f2 > 0 and 2(f1 + f2 + a2) + b(3/2) · a1c ≥ n.

Proof. Consider the first case, which is equivalent to having f1 fixed flexible cops
and a = a1 + a2 fixed active cops. Call a vertex of Qn odd if its vector contains an
odd number of 1’s, and even otherwise. The robber’s initial placement determines
which of the a fixed active cops are even and which are odd: If a cop’s vertex has
the same parity as the robber’s vertex, the cop will be odd, and otherwise she will be
even (recall that the cop parity is determined when it is the robber’s turn). Suppose
the cops choose to initially place s of the fixed active cops on odd vertices and t of
the fixed active cops on even vertices, where s+ t = a, and without loss of generality
assume s ≥ t. Since the robber wants to minimize the number of even cops he will
choose to start at an odd vertex. By Corollary 3.2, the robber is caught if and only if
2f1 + 2t+ s ≥ n. Since the cops want t as large as possible and the robber wants t as
small as possible, the best initial placement for the cops is to split s and t as evenly
as possible (perhaps by placing s cops on some vertex v, and t cops on a neighbor
of v), with the robber making his initial placement so that the larger set is the odd
cops; i.e. we can assume t = ba/2c and s = da/2e. By Corollary 3.2, the cops can
catch the robber if and only if 2f1 + 2ba/2c+ da/2e ≥ n. The result in Case 1 follows
from the equation 2ba/2c+ da/2e = b(3/2) · ac.

In Case 2, when f2 > 0, we note that the parity of the a1 fixed active cops is
determined at the beginning of the game, while all other cops can be made even: If
an odd cop remains among the other cops, that cop can be chosen to stay still on a
turn, thus changing her parity to even, while the other cops all maintain their parity.
Thus the robber’s best strategy is to maximize the number of odd cops among the a1
fixed active cops. As above, the cops’ best strategy is to split these a1 cops as evenly
as possible. The game is then equivalent to one with f1 +f2 +a2 + ba1/2c even active
cops, and da1/2e odd active cops. Similar to Case 1, we apply Corollary 3.2 to obtain
the result. �

Recalling the essential point of the last theorem, that a flexible cop is worth 2,
while an active cop is worth 3/2, we can see that 3 flexible cops should be of the same
power as 4 active cops. That tradeoff is the key to proving the next corollary.

Corollary 4.2 Suppose (a1A+f1F+a2a+f2f) Qn, and let k = a1 +f1 +a2 +f2,
the total number of cops in the minimal force. Then dn/2e ≤ k ≤ d2n/3e and all
such values for k are possible.
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Proof. The inequality dn/2e ≤ k ≤ d2n/3e follows immediately from the criterion
in Theorem 4.1, so it remains to show that all values for k are possible.

We restrict our attention to forces with f fixed flexible cops and a fixed active
cops. Suppose (fF + aA)  Qn, i.e. there is a minimal force of size f + a, so by
Theorem 4.1, 2f + b(3/2) · ac equals n or n+ 1. Since

2(f − 3) + b(3/2) · (a+ 4)c = 2f + b(3/2) · ac,

Theorem 4.1 implies ((f − 3)F + (a + 4)A) Qn and thus there is a minimal force
of size (f − 3) + (a + 4) = f + a + 1. In other words, we can increase the size of a
minimal force by exactly one if we trade 3 flexible cops for 4 active cops.

Applying Theorem 4.1, we obtain a minimal force of dn/2e flexible cops. Then we
repeatedly make the tradeoff to increase the size of the minimal force. Since we can
make this tradeoff bdn/2e/3c times, all values of k from dn/2e to at least d2n/3e − 1
will be realized; we then observe that (d2n/3eA) Qn to finish the proof. �

5 Active and passive cops

We now consider the surprises and challenges raised by introducing passive cops. In
Subsection 5.1 we consider the game where one cop must be passive on each turn and
the rest active, and prove in Theorem 5.2 that on the hypercube such a force is just as
powerful as a fully flexible force. In Subsection 5.2, we move to the other end of the
spectrum and examine games where only one cop is allowed to be active on a turn,
and the rest are required to be passive. In this context the cop number becomes much
larger and the problem becomes much more challenging. We find upper and lower
bounds on the cop number in Theorems 5.4 and 5.5. In Subsection 5.3 we summarize
our current knowledge about the tradeoff between active and passive cops. In contrast
to the active/flexible setting of Section 4, we are quite far from being able to quantify
this tradeoff so we highlight a few interesting open questions.

5.1 One passive cop

In Corollary 4.2, where we considered the active/flexible tradeoff, we found that the
smallest cop number of dn/2e was achieved by a fully flexible force and the largest
cop number of d2n/3e was achieved by a fully active force. Surprisingly, a force
with active and passive cops can have a significantly smaller cop number than a
force with all active cops. For example, here is a simple cop strategy that proves
(dn/2ea + 1p) −→ Qn:

On each turn, while there is more than one odd cop, one odd cop stays
still (thereby becoming even on the next turn) and the rest maintain their
parity until there are dn/2e even cops. These even cops then remain active
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for the rest of the game while the remaining odd cop stays passive. The
dn/2e even active cops have a winning strategy by Theorem 3.1.

Thus the “extra” passive cop allows the remaining cops to become even, and so
dn/2e + 1 cops suffice to catch the robber. Going one step further, in Theorem 5.2,
we give a cop strategy that proves for all n ≥ 3, ((dn/2e − 1)a + 1p) −→ Qn, i.e.
a force with one passive cop and the rest active has the same cop number as the
strongest force, one consisting of all flexible cops! Subsequent to this, we show in
Proposition 5.3 that there is at least some increase in the cop number as we require
more cops to be passive.

Given a force F and a graph G, we write F ∗−→ G to indicate that not only is
the force F sufficient to catch the robber on G, but that it can do so regardless of
the initial position of the game. In the next proof, the “shadow” concept is used, a
common technique, dating back to at least 1987 in [17].

Lemma 5.1 Suppose x, y ≥ 1 are integers and (xa + yp)
∗−→ Qn. Then ((x+ 1)a +

yp)
∗−→ Qn+2.

Proof. Assume (xa + yp)
∗−→ Qn, and the force ((x+ 1)a + yp) is placed arbitrarily

on vertices in Qn+2. We describe a winning strategy for the cops on Qn+2.
Their first goal is to “catch” the robber on the first n coordinates–i.e. to have some

cop whose vector is the same as the robber’s on these coordinates. The cops designate
one particular cop as a chaser. This cop will always be active, and will greedily try to
match the robber’s vector on the first n coordinates. Simultaneously, the remaining
cops, i.e. (xa + yp), play their strategy for Qn on the first n coordinates.

If the chaser succeeds in matching the robber’s first n coordinates, we are done
with the first goal, so let us assume otherwise. Any time the robber flips one of the
last two coordinates, the chaser will get at least one step closer to her goal, so the
robber can only play outside of the first n coordinates a fixed number of times. For
the remaining cops of (xa + yp) a move outside of the first n coordinates looks like
the robber is staying still; since the cops of (xa + yp) can catch the robber from any
starting position, when the robber stays still, they can simply restart their strategy
from the current position. Since there are only a fixed number of restarts, eventually
the robber is active on the first n coordinates long enough for the cops of (xa + yp)
to catch the robber on the first n coordinates. Thus the cops can accomplish their
first goal of catching the robber on the first n coordinates.

With the first goal accomplished, we now have some cop whose distance to the
robber is either 1 or 2. That cop can guarantee she is at distance exactly 2 (measured
right before the robber is to move), by remaining stationary for a turn if necessary,
which is possible since y ≥ 1. Without loss of generality, we may assume a cop has
caught the robber on the first n coordinates, and that the robber’s last two coordinates
are [11] and the cop’s last two coordinates are [00]. The robber may not flip either of
the last two coordinates, and this cop will be responsible for maintaining this state
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by acting as a “shadow” to the robber–every time the robber flips one of the first
n coordinates, the shadow will flip the same one, maintaining distance two. Since
x ≥ 1, the remaining cops can all migrate to the copy of Qn in Qn+2 where the last
two coordinates are [11], and since the robber is confined to move in this copy of Qn,
the remaining cops can play their winning strategy there, which works from any start
position. �

We now prove that a force with one passive cop can catch the robber on Qn with
a total of only dn/2e cops.

Theorem 5.2 For all n ≥ 3, ((dn/2e − 1)a + 1p) Qn.

Proof. We first show that (1a + 1p)
∗−→ Q3 and (1a + 1p)

∗−→ Q4. Since in these
cases there is one active cop and one passive cop on each turn, the cops can move to
any given position, and so the winning strategies do not depend on starting position.

On Q3, the two cops move to occupy the vertices (000) and (111). Then wherever
the robber chooses to go, the cop adjacent to the robber will be active on her next
turn and catch the robber.

On Q4, the cops move to occupy the vertices (0000) and (1111). The robber
then must move to a vertex with two zeros and two ones. Without loss of generality,
assume the robber is at vertex (1100). In this case, one cop should move to (1000),
leaving the other cop at (1111). The only move where the robber is not caught on
the next turn is to (0100). But then the cop at (1111) should move to (0111), and
wherever the robber moves on his next turn, he will be caught.

To complete the proof, we proceed by induction. We have shown the theorem is
true for n = 3 and n = 4, and since these cases satisfy the hypotheses of Lemma 5.1
(i.e. starting position is not important and we have at least one active and one passive
cop), the lemma guarantees that if the theorem is true for n, then it is true for n+ 2.
�

The next proposition shows that with 2 passive cops the best possible cop number
of dn/2e cannot be attained in general.

Proposition 5.3 For all n ≥ 3, ((dn/2e − 2)a + 2p) 6−→ Qn if n ≡ 2 (mod 4).

Proof. Since n ≡ 2 (mod 4), the total number of cops, dn/2e = n/2, is odd. Recall-
ing the terminology in the proof of Theorem 4.1, we observe that the initial placement
of the cops splits into two groups: The cops on even vertices and the cops on odd
vertices. One of these groups is of odd size and the other of even size, since the cop
total is odd. Thus the robber can choose an initial vertex that will result in an even
number of cops at an odd distance, so that after the cops’ first turn, there are an odd
number of odd cops (recall that we measure cop parity on the robber’s turn). For the
rest of the game, since exactly two cops must remain passive on each turn, exactly
two cops change parity on each turn. Thus there will always be at least one odd cop,
and so by the backwards direction of Corollary 3.2, n/2 cops are not sufficient. �
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5.2 One active cop

In this section, we consider the game with one active cop and the rest passive. First
we prove an upper bound on the cop number in this context. A dominating set in
a graph G is a set of vertices D ⊆ V (G) so that every element of V (G) is either in D
or a neighbor of at least one element of D. Since there exists a dominating set on Qn

of size Θ(2n/n), this gives a trivial upper bound for the cop number with one active
cop. Theorem 5.4 gives a slight improvement on this bound.

Theorem 5.4

(
1a +O

(
2n lnn

n3/2

)
p

)
−→ Qn.

Proof. For an integer k, let level k refer to those vertices of Qn with exactly k ones.
We describe a cop strategy where we position the cops so that they dominate level
bn/2c and then move up or down the levels in a phalanx in order to catch the robber.
Let Gk denote the subgraph of Qn induced by levels k and k+1. We claim that for all

k, Gk has a dominating set of size O

(
2n lnn

n3/2

)
. By symmetry it suffices to prove the

claim for k ≤ bn/2c. It is well known (see for example Theorem 1.2.2 in [2]) that for
a graph with N vertices and minimum degree δ, there exists a dominating set of size

N(1 + ln(δ+ 1))/(δ+ 1). Thus it suffices to show that

(
n

k

)
· ln k
k
≤ O

(
2n lnn

n3/2

)
. We

proceed by considering two cases. If n/4 ≤ k ≤ bn/2c, then
(
n
k

)
≤
(

n
n/2

)
≤ O(2n/

√
n),

and (since lnx
x

is decreasing) ln k
k
≤ ln(n/4)

n/4
, so we are done. In the case that k < n/4,

we note that ln k
k
≤ 1, and proceed to bound

(
n
k

)
, by setting k = n/4. Using a Stirling

bound, we see that
(

n
n/4

)
≤ ( 3n

n/4
)n/4 = (121/4)n < (1.9)n, so we are done. That

concludes the proof of the claim.
The cops should initially select a set of vertices, D, that dominates Gbn/2c, and

place two cops on each vertex in D, coloring one red and the other blue, thus supplying
enough cops to dominate any pair of levels. If the robber chooses an initial position
in level bn/2c then he will be caught immediately. Otherwise, we can assume without
loss of generality that he chooses a vertex in some level k > n/2. Note that if the
robber is at some level j, and so long as the cops dominate some level i < j, the
robber is restricted to move only in levels greater than i. Thus at first, the blue
cops should remain in place, while the red cops rearrange themselves one by one to
dominate level bn/2c+ 1. After this is complete, the red cops should remain in place
while the blue cops rearrange themselves to dominate level bn/2c + 2. Proceeding
in this manner, with cops of one level remaining in position to dominate some level
while the cops of the other color proceed to dominate the next, the cops will force
the robber to move only on higher and higher levels, until finally the cops dominate
levels n− 1 and n at which point the robber will be caught. �

Now we prove the lower bound on the cop number.

Theorem 5.5 For sufficiently large n, (1a + 2b
√
n/20cp) 6−→ Qn.
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To prove the theorem, we will define a weight function, where the weight of a cop
is related to her distance from the robber, and the weight of all the cops is the sum
of their individual weights. We will show in Lemma 5.6 that the robber can choose
a starting position of low weight. We then show in Lemmas 5.7 and 5.8 that regard-
less of the cop strategy, the robber can always move to maintain the total weight of
the cops below a certain threshold, and that will guarantee that the robber cannot
be caught. We first prove the theorem assuming Lemmas 5.6, 5.7, and 5.8; then
we prove these three lemmas. For the remainder of this section we assume that n is
very large, let ω = b

√
n/20c, let C = 2ω+1, and assume that the number of cops is C.

Proof of Theorem 5.5. A distance vector is any vector A = (A1, . . . , Aω) where
for all d, Ad is a nonnegative real number. Given a position of the cops and the robber,
the distance vector corresponding to the position is the vector A = (A1, . . . , Aω)
where for 1 ≤ d < ω, Ad = the number of cops at distance exactly d from the robber,
and Aω = the number of cops at distance ω or greater from the robber. Note that
whenever a distance vector is used, it is assumed that there are no cops at distance
0.

To compute the weight function, we define the maximum vector M = (M1, . . . ,Mω)
to be a vector of nonnegative real numbers, where M1 = 42, and for d > 1, Md =

(
√
n)(d−1)

(d− 1)!10(d−1) . We note some important properties of these numbers.

For 2 ≤ d < ω

Md

Md+1

=
(
√
n)(d−1)

(d− 1)!10(d−1) ·
d!10d

(
√
n)d

=
10d√
n
. (1)

This, along with the fact that M1 is constant, implies that for all d ≥ 1,

Md < Md+1. (2)

Given a distance vector A = (A1, . . . , Aω), let

wt(A) =
ω∑

d=1

Ad

Md

.

We call wt(A) the weight of A. By a zero-starting vector we mean a vector whose
first entry is 0.

For the remainder of the proof, we set the constants t = 1/7, and r = 5/6. By
Stirling’s approximation, for n sufficiently large

C = 2b
√
n/20c + 1 < t ·Mω−1. (3)

To prove the theorem, it suffices to prove the following three lemmas.
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Lemma 5.6 Regardless of the initial position chosen by the cops, the robber can
choose a vertex so that the position’s distance vector D is zero-starting, and wt(D) <
r + t = 41/42.

Lemma 5.7 Suppose it is the cops’ turn and the position has a zero-starting distance
vector D such that wt(D) < r+t = 41/42. Then no matter what they do, the resulting
position will have a distance vector A with wt(A) < 1.

Lemma 5.8 Suppose it is the robber’s turn and the position has a distance vector A
such that wt(A) < 1. Then he has a move to a position with a zero-starting distance
vector D such that wt(D) < r + t = 41/42.

By Lemma 5.6, the robber can choose a starting position satisfying the hypotheses
of Lemma 5.7. By Lemma 5.7, whatever the cops do, the distance vector will have
weight < 1. Thus by Lemma 5.8, the robber can put the game back in a position
satisfying the hypotheses of Lemma 5.7. By alternately applying Lemmas 5.7 and
5.8, the robber can evade capture indefinitely, so the cop number must be larger than
C = 2b

√
n/20c + 1. �

Proof of Lemma 5.6. Since Qn is an n-regular graph, the number of vertices in Qn

at distance at most ω from any set of C = 2ω + 1 cops is at most Cnω+1. By a simple
calculation, Cnω+1 = exp(O(

√
n log n)) < 2n for large n, so there is some vertex at

distance ≥ ω from every cop. Thus the robber can start the game in a position where
all cops are at distance ω or greater from the robber. The distance vector of this
position is certainly zero-starting, and has weight C/Mω < t · (Mω−1/Mω) < t, where
the first inequality follows from Equation 3 and the second inequality follows from
Equation 2. �
Proof of Lemma 5.7. The cops can move at most one cop, and since the values of
Md are strictly increasing, the cops can add at most weight 1/M1=1/42. Thus if the
previous weight was less than r + t, the new total weight is less than r + t+ 1/M1 =
5/6 + 1/7 + 1/42 = 1. Also note that since the position has a zero-starting vector,
whatever the cops do, the resulting position has all cops at distance at least one from
the robber. �
Proof of Lemma 5.8. To prove the lemma, we require some further definitions
with regard to vectors. Suppose A = (A1, . . . , Aω) and D = (D1, . . . , Dω) are both
distance vectors. Then A+D = (A1+D1, . . . , Aω+Dω). For integers k ≥ 0 and m ≥ 1
(such that k + m ≤ ω) and real numbers u0, . . . , uk, we denote by [u0, . . . , uk]m the
distance vector (A1, . . . , Aω) such that Am = u0, . . . , Am+k = uk and the rest of the
Ad are zero. For example: [7, 8, 9]3 = (0, 0, 7, 8, 9, 0, 0, . . .). Finally, by B we denote
the vector of positive real numbers B = (B1, . . . , Bω−1) such that B1 = B2 = 1, and
for d ≥ 3, Bd = Md−1/3.

The next definition (of the “Splitting transformation”) represents a key concept
in our proof. When the robber moves, some cops get one step closer to the robber
and some become one step further from the robber. In particular, for the cops at
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distance d, some will be at distance d− 1 and the rest will be at distance d+ 1; none
of them will be at distance d. The robber’s goal is to have as few cops as possible get
closer. We will see that the splitting transformation represents an upper bound on
the worst case for the robber.

Definition 5.9 (Splitting Transformation) We define a function spl from distance
vectors to distance vectors. We first define the function on vectors with one nonneg-
ative real entry, u.

• Let spl([u]1) = [0, u]1.

• Let spl([u]ω) = [u]ω−1.

• For 1 < d < ω,

spl([u]d) =

[
u

Md

Bd, 0,

(
u− u

Md

Bd

)]
d−1

.

For any vector A = (A1, . . . , Aω), we define spl(A) = spl([A1]1) + . . .+ spl([Aω]ω)

The splitting transformation has the following key property.

Claim 5.10 If A is a distance vector with wt(A) < 1, then wt(spl(A)) ≤ wt(A)r+t.

Proof of Claim 5.10. We show this by considering wt(spl([Ad]d)) for each value
of d. We will repeatedly use the observation that since wt(A) < 1, then Ad < Md for
any d.

• d = 1: In this case, we first note that M1/M2 = 420/
√
n < 5/6 = r. Thus,

wt(spl([A1]1)) =
A1

M2

≤ A1

M1

r

• 2 < d < ω:

wt(spl([Ad]d)) =
(Ad/Md)Bd

Md−1
+
Ad − (Ad/Md)Bd

Md+1

=
(Ad/Md)Bd

Md−1
+

(Ad/Md)Md − (Ad/Md)Bd

Md+1

= (Ad/Md)

(
Bd

Md−1
+
Md −Bd

Md+1

)
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Now,

Bd

Md−1
+
Md −Bd

Md+1

=
(1/3)Md−1

Md−1
+
Md − (1/3)Md−1

Md+1

= (1/3) +
Md

Md+1

− (1/3)
Md−1

Md+1

≤ (1/3) +
10d√
n
− 0

using Equation 1. The last expression is largest when d = ω−1, so making this
substitution we conclude

wt(spl([Ad]d)) ≤ (Ad/Md)

(
(1/3) +

10(ω − 1)√
n

)
≤ (Ad/Md)

(
(1/3) +

10(
√
n/20)√
n

)
= (Ad/Md)(1/3 + 1/2)

= (Ad/Md)r

• d = 2: This case is basically identical to the previous case except (since Bd = 1
when d = 2)

Bd

Md−1
+
Md −Bd

Md+1

≤ (1/42) +
10d√
n
≤ r.

• d = ω: In this case, spl([Aω]ω) = [Aω]ω−1. Since the total number of cops is
≤ t ·Mω−1, by Equation 3, so is Aω, so wt(spl([Aω]ω) = Aω/Mω−1 ≤ t.

Now we finish the argument for A = (A1, . . . , Aω).

wt(spl(A)) = wt(spl([A1]1)) + · · ·+ wt(spl([Aω]ω))

≤ (A1/M1)r + · · ·+ (Aω−1/Mω−1)r + t

= ((A1/M1) + . . .+ (Aω−1/Mω−1))r + t

≤ wt(A)r + t

�
We will now show that the robber has a move to a position with a zero-starting

distance vector D such that wt(D) ≤ wt(spl(A)). The following series of inequalities
then finishes the proof of Lemma 5.8:

wt(D) ≤ wt(spl(A))
≤ wt(A) · r + t, by Claim 5.10
< r + t, since wt(A) < 1.
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Now we find such a vector D. Consider some fixed integer d such that 1 ≤ d < ω.
Label the n neighbors of the robber by 1, 2, . . . , n and let zi = the number of cops at
distance d from the robber such that vertex i is on a shortest path from her to the
robber. Consider the sum z1 + . . .+ zn. Note that each cop at distance d contributes
exactly d to this sum, since a cop at distance d has exactly d neighbors of the robber
on a shortest path between her and the robber (To see this, it is helpful to recall that
we may assume that the robber is at vertex (00 . . . 0)). Thus

z1 + . . .+ zn = dAd.

Since

(
d ·Md

Bd

)(
Ad

Md

·Bd

)
= d ·Ad, at most

d ·Md

Bd

of the zi can be
Ad

Md

·Bd or more;

we call the corresponding i values the bad neighbors for d.
As we range over all d < ω, the total number of bad neighbors is at most

1 ·M1

B1

+ . . .+
(ω − 1) ·Mω−1

Bω−1
.

For all d < ω, using Equation 1, we conclude that
d ·Md

Bd

<
√
n, so the total number

of bad neighbors is at most ω ·
√
n = b

√
n/20c ·

√
n < n. Thus the robber can move

to a vertex that is not bad for any d; suppose this new position has distance vector
D = (D1, . . . , Dω).

To understand the change in weight from A to D, we examine what happens to
each coordinate of A. Of the Ad cops at distance d, some number of these, say Ld will
get closer to the robber and thus be at distance d− 1 and the rest, Ad−Ld, must get
further away, arriving at distance d+1. Since D is not bad for any d, we obtain for all

d, that Ld <
Ad

Md

·Bd. Notice that in the case that d = 1 or d = 2,
Ad

Md

·Bd =
Ad

Md

< 1,

where the inequality holds because wt(A) < 1. Thus Ld = 0 for d = 1 and d = 2, and
D is a zero-starting distance vector. We can write (D1, . . . , Dω) = D∗1 + . . . + D∗ω,
where

• For 1 < d < ω: D∗d = [Ld, 0, Ad − Ld]d−1

• For d = ω: D∗ω = [Lω, Aω − Lω]ω−1

• For d = 1: D∗1 = [0, A1]1

Since Ld <
Ad

Md

·Bd for all d, and the values of Md increase with d, for 1 < d < ω

wt(D∗d) =
Ld

Md−1
+
Ad − Ld

Md+1

≤ (Ad/Md)Bd

Md−1
+
Ad − (Ad/Md)Bd

Md+1

= wt(spl([Ad]d))
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It is also easy to see that wt(D∗d) ≤ wt(spl([Ad]d)) for d = 1 and d = ω, so we can
conclude

wt(D) = wt(D∗1) + . . .+ wt(D∗ω)

≤ wt(spl([A1]1)) + . . .+ wt(spl([Aω]ω))

= wt(spl(A)).

�
Remark. The proof of Theorem 5.5 can be adapted to give a lower bound of

2c
√
n (with a smaller constant c > 0) on the cop number of a game with any constant

number of active cops and the rest passive.

5.3 Active versus passive tradeoff

In the last two subsections we considered the game with active and passive cops,
focusing on the game in which only one cop is active, and on the game in which all
cops are active but one. We now consider the full range of possibilities, summarizing
our knowledge and presenting some open questions.

For an integer k, let Cka(n) be k + r, where r is the smallest integer such that
ka + rp −→ Qn. In this notation, Theorem 5.2 states that C(dn/2e−1)a(n) = dn/2e.
However, for C1a(n) our understanding is not complete; Theorems 5.4 and 5.5 show
that for n sufficiently large,

2b
√
n/20c < C1a(n) ≤ O(2n lnn/n3/2).

We are interested in the values of Cka for k such that 1 ≤ k < dn/2e. We conjecture
that

C(dn/2e−1)a(n) ≤ C(dn/2e−2)a(n) ≤ . . . ≤ C1a(n). (4)

At the right end of this conjectured linear order, i.e. for Cka(n) with k constant, we
found, in Theorem 5.5 and the remark following it, that for large n the value is large,
at least 2c·

√
n (for some constant c > 0). At the left end of the linear order, the next

proposition shows that C(dn/2e−m)a(n) with a constant m is asymptotically n/2, i.e.
as small as the most powerful force, the fully flexible force.

Proposition 5.11 For m constant,

lim
n−→∞

C(dn/2e−m)a(n)

(n/2)
= 1.

Proof. We conclude that C2a(n+2) ≤ C1a(n)+1 by observing that (1a+mp) −→ Qn

implies (1a+mp)
∗−→ Qn, which in turn, by Lemma 5.1, implies (2a+mp)

∗−→ Qn+2.
Similarly, for 1 ≤ k ≤ (dn/2e − 3), we can bound C(k+1)a(n) by applying Lemma 5.1
k times, to imply that

C(k+1)a(n+ 2k) ≤ C1a(n) + k,

19



or equivalently,
C(k+1)a(n) ≤ C1a(n− 2k) + k. (5)

If k = k(n), we can use inequality (5) to give the bound

C(k(n)+1)a(n) ≤ C1a(n− 2k(n)) + k(n). (6)

For k(n) = n/2−m, inequality (6) becomes

C(n/2−m+1)a(n) ≤ C1a(2m) + k(n)

which suffices to prove the proposition because C1a(2m) is a constant. �
This leaves very open what happens to Cka(n) for values of k like n/4 or log n,

which are neither constant, nor within a constant of n/2.

Open Question 1 Determine the value of Cka(n) for 1 ≤ k < dn/2e − 1.

Even if we cannot determine the values of Cka(n) exactly, it would still be inter-
esting to understand how this quantity behaves as the parameters are changed. We
would expect that Cka(n) would decrease in k and increase in n, and in the next
proposition we show that there is an increase in n. However we cannot prove that
there is a decrease in k, though we note the trivial claim that C(k+1)a(n) ≤ Cka(n)+1,
i.e. we almost have the conjectured linear order (4).

Open Question 2 How big is the gap between Cka(n) and C(k+1)a(n)?

Proposition 5.12 For k ≥ 1, Cka(n) ≥ Cka(n− 1).

Proof. It suffices to show that if ka + mp −→ Qn then ka + mp −→ Qn−1. We
give a strategy for the cops to catch the robber on Qn−1 (in the “(n− 1)-game”) by
using their winning strategy on Qn (in the “n-game”). If a cop has initial position
(x1, . . . , xn−1, 0) in the n-game, she should choose initial position (x1, . . . , xn−1) in
the (n − 1)-game. Otherwise, if a cop has initial position (x1, x2, . . . , xn−1, 1) in the
n-game, she should choose initial position (1− x1, x2, . . . , xn−1) in the (n− 1)-game.

The robber moves in Qn−1 correspond to robber moves in Qn where the last
coordinate is 0. On the cops’ turn, if the robber is at vertex (x1, . . . , xn−1) in Qn−1,
they should use the n-game strategy for the robber placed at (x1, . . . , xn−1, 0) in Qn.
Whenever the n-game strategy calls for a cop to flip one of the first n−1 coordinates,
she should do that in the (n− 1)-game, and if the strategy calls for a cop to flip the
nth coordinate, she should instead flip the first one.

This strategy guarantees the following condition: If a cop’s position in the n-
game is (x1, . . . , xn−1, 0), then her position in the (n−1)-game is (x1, . . . , xn−1). This
condition is enough to guarantee that when the robber is caught in the n-game, he is
also caught in the (n− 1)-game. �

20



6 The relationship to Graph Searching

We now relate Cops and Robber to the Graph Searching game. One version of the
Graph Searching game has all flexible cops, but allows the robber to move “infinitely
fast,” that is on the robber’s turn, he may move any number of steps along any
path, provided that no cop occupies a vertex on the path. Let C∞(n) be the number
of cops required to catch the robber on Qn under these rules. In Lemma 6.1 we
prove C1a(n) ≤ C∞(n), and use this to derive the lower bound for C∞(n) given in
Corollary 6.2.

Lemma 6.1 C1a(n) ≤ C∞(n).

Proof. We refer to the game associated with C1a(n) as the “1-active game” and the
game associated with C∞(n) as the “∞−game”. It suffices to show that if the robber
has a strategy to evade m cops in the 1-active game, then he has a strategy to evade
m cops in the ∞−game.

We now describe a robber strategy for the ∞−game, using his strategy in the
1-active game. After the cops’ initial placement in the ∞−game, we place the cops
on the same vertices in the 1−active game to see the robber’s initial placement. We
choose the robber’s initial placement in the∞−game to be the same as his placement
in the 1−active game.

The two games start out in the same position. To show that the robber can win,
it suffices to show that the games persist in the same position. Assume the two games
are in the same position. Some r of the m cops move in the ∞−game. The robber
needs to respond. He considers the corresponding 1-active game, selecting the same
r cops that moved, but now he moves them one at a time, seeing what the sequence
of robber moves are in this case. Since the robber has an evading strategy in the
1-active game, his sequence of moves can never take him to a place where he could be
caught. In particular, this sequence of robber moves never overlaps with one of the
m original vertices of the cops, nor any of the r vertices that the r cops moved to.
Thus in one turn of the ∞−game the robber can safely copy this sequence of moves.
The two games are thus in the same position again, and the robber can continue in
a similar fashion. �

The following is an immediate corollary of Lemma 6.1 and Theorem 5.5.

Corollary 6.2 For n sufficiently large, 2b
√
n/20c ≤ C∞(n).

We remark that the inequality in Lemma 6.1 would hold for the respective games
played on any graph, since there are no properties of the hypercube used in the proof.
Most other versions of the Graph Searching game, for example the version where the
robber is infinitely fast and also invisible, make it even more difficult for the cops to
catch the robber. Thus C1a(n) is also a lower bound for those cop numbers. Though
Lemma 6.1 is a first step toward connecting Cops and Robber with Graph Searching,
we do not know how close the connection is.
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Open Question 3 How big is the gap between C1a(n) and C∞(n)?
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